Development of Low-Cost Iot for Tree Instability Detection System and Early Hazard Notification

Authors

Abd Shukur Jaafar

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

Nur Alisa Ali

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

Abd Majid Darsono

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

Zul Atfyi Fauzan Md Napiah

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

M. N. Hazeq

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

N. Syafiqa

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

N. Ain Faqihah

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

Mohd Harris Misran

Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK) Universiti Teknikal (Malaysia Melaka)

Article Information

DOI: 10.47772/IJRISS.2025.910000315

Subject Category: Social science

Volume/Issue: 9/10 | Page No: 3883-3889

Publication Timeline

Submitted: 2025-10-14

Accepted: 2025-10-22

Published: 2025-11-11

Abstract

Urban tree failures have emerged as a growing safety issue in Malaysia, with nearly 5,000 reported incidents in 2023 that resulted in fatalities and considerable damage to surrounding infrastructure. Conventional monitoring methods, including manual inspections and GIS-based management systems, remain largely reactive, time-consuming, and costly to maintain. In response to these challenges, this study presents an Internet of Things (IoT)–based early warning system capable of detecting potential tree instability in real time. The system integrates MPU6050 motion sensors with ESP32 microcontrollers and employs LoRa communication technology for long-range, low-power data transmission. Collected data are automatically uploaded to cloud-based Google Sheets for continuous recording and analysis. When the measured tilt angles surpass a defined threshold, immediate alerts are transmitted to responsible personnel through a Telegram Bot interface. This integrated approach provides a practical, low-cost, and scalable solution that improves detection accuracy, reduces reliance on manual observation, and facilitates more proactive management of urban trees. The use of open-source platforms and readily available components also enhances system accessibility, making it suitable for implementation by local authorities and community-based environmental initiatives.

Keywords

Tree monitoring system, internet-of-things

Downloads

References

1. W. Y. Chau, "AI-IoT integrated framework for tree tilt monitoring," IFAC-PapersOnLine, vol. 56, no. 8, pp. 472-477, 2023, doi: 10.1016/j.ifacol.2023.03.472 [Google Scholar] [Crossref]

2. F. Zanotto, "Wind-tree interaction: Technologies, measurement systems, and monitoring," Measurement, vol. 184, 2024, doi: 10.1080/02757540.2024.1392398. [Google Scholar] [Crossref]

3. K. Frediani, "Tree Management System (TMS)," University of Dundee, 2025. [Google Scholar] [Crossref]

4. S. Patil, M. Kothari, M. Patrawala, and O. Madrewar, "Tree Health Monitoring and Management System using IoT," IJNRD, 2025. [Google Scholar] [Crossref]

5. A. Abdella et al., "Towards tree-based systems disturbance monitoring of tropical mosaic landscapes," Chemosphere, vol. 320, 2023, doi: 10.1016/j.ces.2023.103484. [Google Scholar] [Crossref]

6. S. Abbas et al., "Tree tilt monitoring in rural and urban landscapes of Hong Kong," Ecological Indicators, vol. 130, 2020, doi: 10.1016/j.ecolind.2020.106773. [Google Scholar] [Crossref]

7. A. Gupta et al., "GreenScan: Toward large-scale terrestrial monitoring of urban trees," IEEE Trans. Geosci. Remote Sens., 2024, doi: 10.1109/TGRS.2024.10529969. [Google Scholar] [Crossref]

8. J. Breidenbach et al., "Tree species from space: a new product for German forest monitoring," International Journal of Remote Sensing, 2025, doi: 10.1080/01431161.2025.2530236. [Google Scholar] [Crossref]

9. A. Ouaknine et al., "OpenForest: a data catalog for machine learning in forest monitoring," Environmental Data Science, 2025, doi: 10.1017/eds.2025.5. [Google Scholar] [Crossref]

10. J. Francis et al., "Monitoring canopy quality and improving equitable urban heat equity with trees," Ecological Indicators, vol. 153, 2023, doi: 10.1016/j.ecolind.2023.108466. [Google Scholar] [Crossref]

11. N. Bagheri et al., "Appropriate vegetation indices and data analysis methods for orchard trees," ISPRS Journal of Photogrammetry and Remote Sensing, 2025, doi: 10.1016/j.isprsjprs.2025.12.005. [Google Scholar] [Crossref]

12. International Tree Mortality Network, "Towards a global understanding of tree mortality," New Phytologist, 2025, doi: 10.1111/nph.20407. [Google Scholar] [Crossref]

13. S. Abbas et al., "Tree tilt monitoring system using smart sensing," Sustainable Cities and Society, 2020, doi: 10.1016/j.scs.2020.102267. [Google Scholar] [Crossref]

14. S. Patil et al., "IoT-based tree health monitoring system with remote data access," IJNRD, 2025. [Google Scholar] [Crossref]

15. F. Zanotto, "Advances in wind-tree interaction and monitoring technologies," Measurement, vol. 184, 2024, doi: 10.1080/02757540.2024.1392398. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles