Evaluating the Learner Information System of the Department of Education Schools Division of Sagay City: A Technology Impact Assessment

Authors

Stephanie Dane S. Salvador

Department of Education, Sagay City (Philippines)

Maradoni Louisse A. Ambrad

North Negros College, Cadiz City (Philippines)

Article Information

DOI: 10.47772/IJRISS.2025.903SEDU0745

Subject Category: Education

Volume/Issue: 9/26 | Page No: 9778-9789

Publication Timeline

Submitted: 2025-12-06

Accepted: 2025-12-12

Published: 2025-12-20

Abstract

The accelerated adoption of digital systems in Philippine basic education has reshaped administrative processes, particularly learner data management and reporting. This study evaluates the Learner Information System (LIS)—a nationwide web-based platform implemented by the Department of Education, Schools Division of Sagay City—for enrollment, tracking, and centralized record management. Guided by Information Systems theories (TAM, UTAUT, TTF, DeLone & McLean), it examines perceived environmental, social, economic, health, and risk impacts in a localized context.
A descriptive-evaluative design involved 320 teaching/non-teaching personnel via stratified random sampling (78% response rate). The PTM 607 questionnaire showed strong reliability (Cronbach’s α = .79–.91 per domain; overall α = .91) and construct validity (EFA: KMO = .89, loadings .62–.88). Analyses included descriptive statistics, t-tests for subgroups (school level, connectivity, roles), regression for predictors (role, years of service, connectivity), and sensitivity checks for Likert cutoffs. Triangulation used open-ended responses and system logs (uptime, transactions).

Keywords

Learner Information System; educational technology; DepEd

Downloads

References

1. Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–402. https://doi.org/10.2307/3150783 [Google Scholar] [Crossref]

2. Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 211–218. https://doi.org/10.17705/1jais.00126 [Google Scholar] [Crossref]

3. Bete, J. E. B., & Collera, A. A. (2025). Assessing the efficiency of the Learners Information System in a rural Philippine national high school. Journal of Interdisciplinary Perspectives, 3(4). [Google Scholar] [Crossref]

4. Boone, H. N., & Boone, D. A. (2012). Analyzing Likert data. Journal of Extension, 50(2), Article 2TOT2. [Google Scholar] [Crossref]

5. Bostrom, R. P., & Heinen, J. S. (1977). MIS problems and failures: A socio-technical perspective. MIS Quarterly, 1(3), 17–32. https://doi.org/10.2307/248710 [Google Scholar] [Crossref]

6. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Press. [Google Scholar] [Crossref]

7. Byrne, B. M. (2016). Structural equation modeling with AMOS (3rd ed.). Routledge. [Google Scholar] [Crossref]

8. Calugay, M. G. D., & Danlog, K. P. (2020). Software quality evaluation of developed Learner’s Information System: A case study in SDO I Pangasinan. Asian Journal of Management Sciences. [Google Scholar] [Crossref]

9. Carifio, J., & Perla, R. (2008). Resolving the 50-year debate around using and misusing Likert scales. Medical Education, 42(12), 1150–1152. https://doi.org/10.1111/j.1365-2923.2008.03172.x [Google Scholar] [Crossref]

10. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Routledge. [Google Scholar] [Crossref]

11. Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage. [Google Scholar] [Crossref]

12. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555 [Google Scholar] [Crossref]

13. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 [Google Scholar] [Crossref]

14. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748 [Google Scholar] [Crossref]

15. Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail, and mixed-mode surveys: The tailored design method (4th ed.). Wiley. [Google Scholar] [Crossref]

16. Fabrigar, L. R., & Wegener, D. T. (2012). Exploratory factor analysis. Oxford University Press. [Google Scholar] [Crossref]

17. Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). Sage. [Google Scholar] [Crossref]

18. Goodhue, D. L., & Thompson, R. L. (1995). Task–technology fit and individual performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689 [Google Scholar] [Crossref]

19. Gravetter, F. J., & Wallnau, L. B. (2021). Statistics for the behavioral sciences (11th ed.). Cengage. [Google Scholar] [Crossref]

20. Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2009). Survey methodology (2nd ed.). Wiley. [Google Scholar] [Crossref]

21. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage. [Google Scholar] [Crossref]

22. Heeks, R. (2009). The ICT4D 2.0 manifesto: Where next for ICTs and international development? Development Informatics Working Paper No. 42. University of Manchester. [Google Scholar] [Crossref]

23. Hilty, L. M., & Aebischer, B. (2015). ICT for sustainability: An emerging research field. Environmental Modelling & Software, 56, 158–165. https://doi.org/10.1016/j.envsoft.2014.07.002 [Google Scholar] [Crossref]

24. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 [Google Scholar] [Crossref]

25. Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained. British Journal of Applied Science & Technology, 7(4), 396–403. https://doi.org/10.9734/BJAST/2015/14975 [Google Scholar] [Crossref]

26. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575 [Google Scholar] [Crossref]

27. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.005 [Google Scholar] [Crossref]

28. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press. [Google Scholar] [Crossref]

29. Matias, J., & Timosan, J. Q. (2021). Examining teachers’ use of learning information systems in Philippine basic education using structural equation modeling. International Journal of Enterprise Information Systems, 17(1), 69–84. https://doi.org/10.4018/IJEIS.2021010104 [Google Scholar] [Crossref]

30. Maxwell, J. A. (2013). Qualitative research design: An interactive approach (3rd ed.). Sage. [Google Scholar] [Crossref]

31. Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation (4th ed.). Jossey-Bass. [Google Scholar] [Crossref]

32. Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632. https://doi.org/10.1007/s10459-010-9222-y [Google Scholar] [Crossref]

33. Organisation for Economic Co-operation and Development. (2019). Measuring the digital transformation: A roadmap for the future. OECD Publishing. https://doi.org/10.1787/9789264311992-en [Google Scholar] [Crossref]

34. Osborne, J. W. (2015). Best practices in exploratory factor analysis. CreateSpace. [Google Scholar] [Crossref]

35. Patton, M. Q. (2015). Qualitative research & evaluation methods (4th ed.). Sage. [Google Scholar] [Crossref]

36. Porter, M. E., & Heppelmann, J. E. (2018). Why every organization needs an augmented reality strategy. Harvard Business Review. https://hbr.org/2017/11/why-every-organization-needs-an-augmented-reality-strategy [Google Scholar] [Crossref]

37. Selwyn, N. (2016). Education and technology: Key issues and debates (2nd ed.). Bloomsbury. [Google Scholar] [Crossref]

38. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin. [Google Scholar] [Crossref]

39. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis. Oxford University Press. [Google Scholar] [Crossref]

40. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd [Google Scholar] [Crossref]

41. Toyama, K. (2011). Technology as amplifier in international development. Proceedings of the iConference, 75–82. https://doi.org/10.1145/1940761.1940772 [Google Scholar] [Crossref]

42. Unwin, T. (2009). ICT4D: Information and communication technology for development. Cambridge University Press. [Google Scholar] [Crossref]

43. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 [Google Scholar] [Crossref]

44. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles