Exploring the Psychological Mechanisms behind AI Chatbot Adoption
Authors
University of Tunis (Tunis)
Article Information
DOI: 10.47772/IJRISS.2025.91200071
Subject Category: Social science
Volume/Issue: 9/12 | Page No: 896-909
Publication Timeline
Submitted: 2025-12-14
Accepted: 2025-12-21
Published: 2025-12-31
Abstract
Objective: This study examines the fundamental determinants influencing the intention to adopt AI chatbots in the telecommunication services context in an emerging market. Specifically, it investigates the influence of perceived ease of use (PEOU), perceived usefulness (PU), initial trust, and technology anxiety on chatbot usage intention
Keywords
Chatbot services, perceived ease of use (PEOU)
Downloads
References
1. Ahn, H. (2022). Emotional intelligence as a personality trait that predicts consumption behavior: The role of consumer emotional intelligence in persuasive communication. Sustainability, 14, 15461. [Google Scholar] [Crossref]
2. Ahn, H. (2023). Unrevealing voice search behaviors: Technology acceptance model meets anthropomorphism in understanding consumer psychology in the US market. Sustainability, 15(23), 16455. [Google Scholar] [Crossref]
3. Alboqami, H. (2023). Factors affecting consumers' adoption of AI-based chatbots: The role of anthropomorphism. American Journal of Industrial and Business Management, 13(4), 195–214. [Google Scholar] [Crossref]
4. Alotaibi, M., & Hidayat-ur-Rehman, I. (2025). An empirical analysis of user intention to use chatbots for airline tickets consultation. Journal of Science and Technology Policy Management, 16(1), 204–228. https://doi.org/10.1108/JSTPM-03-2024-0087 [Google Scholar] [Crossref]
5. Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. [Google Scholar] [Crossref]
6. Amin, M., Rezaei, S., & Abolghasemi, M. (2014). User satisfaction with mobile websites: The impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Business Review International, 5(3), 258–274. [Google Scholar] [Crossref]
7. Applied Psychology, Vol. 88 No. 5, pp. 879-903, doi: 10.1037/0021-9010.88.5.879. [Google Scholar] [Crossref]
8. Araújo, T., & Casais, B. (2020). Customer acceptance of shopping-assistant chatbots. In Á. Rocha, J. L. Reis, M. K. Peter, & Z. Bogdanović (Eds.), Marketing and smart technologies (Vol. 167, pp. 278–287). Springer Singapore. https://doi.org/10.1007/978-981-15-1564-4_26 [Google Scholar] [Crossref]
9. Arce-Urriza, M., Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2025). From familiarity to acceptance: The impact of generative artificial intelligence on consumer adoption of retail chatbots. Journal of Retailing and Consumer Services, 84, 104234. [Google Scholar] [Crossref]
10. Ayanwale, M. A., & Ndlovu, M. (2024). Investigating factors of students’ behavioral intentions to adopt chatbot technologies in higher education: Perspective from expanded diffusion theory of innovation. Computers in Human Behavior Reports, 14, 100396. [Google Scholar] [Crossref]
11. Bailey, D. R., Almusharraf, N., & Almusharraf, A. (2022). Video conferencing in the e-learning context: Explaining learning outcome with the technology acceptance model. Education and Information Technologies, 27(6), 7679–7698. https://doi.org/10.1007/s10639-022-10949-1 [Google Scholar] [Crossref]
12. Bakhshi, N., van den Berg, H., Broersen, S., de Vries, D., Bouazzaoui, H. E., & Michels, B. (2018). Chatbots Point of View. Deloitte. Retrieved December 20, 2022, from https://www2.deloitte.com/content/ [Google Scholar] [Crossref]
13. Bayaga, A., & Du Plessis, A. (2023). Ramifications of the Unified Theory of Acceptance and Use of Technology (UTAUT) among developing countries’ higher education staffs. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12194-6 [Google Scholar] [Crossref]
14. behavioral research: a critical review of the literature and recommended remedies”, Journal of [Google Scholar] [Crossref]
15. Chen, Y.-H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21–36. [Google Scholar] [Crossref]
16. Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539–548. https://doi.org/10.1016/j.future.2018.01.055 [Google Scholar] [Crossref]
17. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 [Google Scholar] [Crossref]
18. De Cicco, R., Iacobucci, S., Aquino, A., Romana Alparone, F., & Palumbo, R. (2021, November). Understanding users’ acceptance of chatbots: an extended TAM approach. In International Workshop on Chatbot Research and Design (pp. 3-22). [Google Scholar] [Crossref]
19. Desaulniers, S. (2016). Chatbots rise, and the future may be ‘re-written’. Development, 82(2), 13–30. https://doi.org/10.1111/mono.12296 [Google Scholar] [Crossref]
20. Dinh, C. M., & Park, S. (2024). How to increase consumer intention to use Chatbots? An empirical analysis of hedonic and utilitarian motivations on social presence and the moderating effects of fear across generations. Electronic Commerce Research, 24(4), 2427-2467. [Google Scholar] [Crossref]
21. Eger, L., Komárková, L., Egerová, D., & Mičík, M. (2021). The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. Journal of Retailing and Consumer Services, 61, 102542. https://doi.org/10.1016/j.jretconser.2021.102542 [Google Scholar] [Crossref]
22. Elliott, C. (2018). Chatbots are killing customer service. Here’s why. European Conference on Knowledge Management, Vol. 25, pp. 1115-1122. [Google Scholar] [Crossref]
23. Fallaque, C.A.H. (2024), “Impact of chatbots on satisfaction and loyalty in Lima’s telecom sector”, [Google Scholar] [Crossref]
24. Følstad, A., Araujo, T., Papadopoulos, S., Law, E. L. C., Granmo, O. C., Luger, E., & Brandtzaeg, P. B. (2020). Chatbot research and design. Amsterdam: Springer International Publishing. [Google Scholar] [Crossref]
25. Forbes. (2017). How chatbots improve customer experience in every industry: An infographic. Retrieved from https://www.forbes.com/ [Google Scholar] [Crossref]
26. Foroudi, P., Gupta, S., Sivarajah, U., & Broderick, A. (2018). Investigating the effects of smart technology on customer dynamics and customer experience. Computers in Human Behavior, 80, 271-282. [Google Scholar] [Crossref]
27. Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. Journal of Business Research, 69(8), 3192–3198. [Google Scholar] [Crossref]
28. Gani, M. O., Rahman, M. S., Bag, S., & Mia, M. P. (2024). Examining behavioural intention of using smart health care technology among females: Dynamics of social influence and perceived usefulness. Benchmarking: An International Journal, 31(2), 330–352. [Google Scholar] [Crossref]
29. Gopinath, K., & Kasilingam, D. (2023). Antecedents of intention to use chatbots in service encounters: A meta-analytic review. International Journal of Consumer Studies, 47(6), 2367–2395. https://doi.org/10.1111/ijcs.12933 [Google Scholar] [Crossref]
30. Gümüş, N., & Çark, Ö. (2021). The effect of customers' attitudes towards chatbots on their experience and behavioral intention in Turkey. Interdisciplinary Description of Complex Systems, 19(3), 420–436. https://doi.org/10.7906/indecs19.3.6 [Google Scholar] [Crossref]
31. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. [Google Scholar] [Crossref]
32. Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. [Google Scholar] [Crossref]
33. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8 [Google Scholar] [Crossref]
34. Hong, I.B. and Cha, H.S. (2013), “The mediating role of consumer trust in an online merchant in [Google Scholar] [Crossref]
35. Ibrahim, F., Münscher, J.-C., Daseking, M., & Telle, N.-T. (2025). The technology acceptance model and adopter type analysis in the context of artificial intelligence. Frontiers in Artificial Intelligence, 7, 1496518. https://doi.org/10.3389/frai.2024.1496518 [Google Scholar] [Crossref]
36. Ismatullaev, U. V. U., & Kim, S. H. (2024). Review of the factors affecting acceptance of AI-infused systems. Human Factors, 66(1), 126–144. https://doi.org/10.1177/00187208211064707 [Google Scholar] [Crossref]
37. Jager, J., Putnick, D. L., & Bornstein, M. H. (2017). II. More than just convenient: The scientific merits of homogeneous convenience samples. Monographs of the society for research in child development, 82(2), 13-30. [Google Scholar] [Crossref]
38. Jo, H. (2022). Continuance intention to use artificial intelligence personal assistant: Type, gender, and use experience. Heliyon, 8(9), e10585. https://doi.org/10.1016/j.heliyon.2022.e10585 [Google Scholar] [Crossref]
39. Jyothsna, M., & Kryvinska, N. (2024). Exploring the chatbot usage intention: A mediating role of chatbot initial trust. Heliyon, 10, e33028. [Google Scholar] [Crossref]
40. Kaabachi, S., Ben Mrad, S., & O’Leary, B. (2019). Consumer’s initial trust formation in IOB’s acceptance: The role of social influence and perceived compatibility. International Journal of Bank Marketing, 37(2), 507–530. https://doi.org/10.1108/IJBM-12-2017-0270 [Google Scholar] [Crossref]
41. Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280.https://doi.org/10.1016/j.techsoc.2020.101280 [Google Scholar] [Crossref]
42. Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [Google Scholar] [Crossref]
43. Khanfar, A. A., Kiani Mavi, R., Iranmanesh, M., & Gengatharen, D. (2024). Determinants of artificial intelligence adoption: Research themes and future directions. Information Technology and Management. https://doi.org/10.1007/s10799-024-00435-0 [Google Scholar] [Crossref]
44. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003 [Google Scholar] [Crossref]
45. Koufaris, M., & Hampton-Sosa, W. (2004). The development of initial trust in an online company by new customers. Information & Management, 41(3), 377–397. https://doi.org/10.1016/j.im.2003.08.004 [Google Scholar] [Crossref]
46. Lam, S. Y., Chiang, J., & Parasuraman, A. (2008). The effects of the dimensions of technology readiness on technology acceptance: An empirical analysis. Journal of Interactive Marketing, 22(4), 19–39. https://doi.org/10.1002/dir.20115 [Google Scholar] [Crossref]
47. Li, B., Chen, Y., Liu, L., & Zheng, B. (2023). Users’ intention to adopt artificial intelligence-based chatbot: A meta-analysis. The Service Industries Journal, 43(15–16), 1117–1139. https://doi.org/10.1080/02642069.2023.2217756 [Google Scholar] [Crossref]
48. Li, L., Lee, K. Y., Emokpae, E., & Yang, S.-B. (2021). What makes you continuously use chatbot services? Evidence from Chinese online travel agencies. Electronic Markets, 31, 575–599. https://doi.org/10.1007/s12525-020-00441-6 [Google Scholar] [Crossref]
49. Li, X., Hess, T. J., & Valacich, J. S. (2008). Why do we trust new technology? A study of initial trust formation with organizational information systems. The Journal of Strategic Information Systems, 17(1), 39–71. https://doi.org/10.1016/j.jsis.2008.01.001 [Google Scholar] [Crossref]
50. Liu, M., Yang, Y., Ren, Y., Jia, Y., Ma, H., Luo, J., Fang, S., Qi, M., & Zhang, L. (2024). What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. Journal of Hospitality and Tourism Technology, 15(4), 667–689. [Google Scholar] [Crossref]
51. Liu, Z., Shan, J., & Pigneur, Y. (2016). The role of personalized services and control: An empirical evaluation of privacy calculus and technology acceptance model in the mobile context. Journal of Information Privacy and Security, 12(3), 123–144. [Google Scholar] [Crossref]
52. Maduku, D. K., Rana, N. P., Mpinganjira, M., Thusi, P., Mkhize, N. H.-B., & Ledikwe, A. (2024). Do AI-powered digital assistants influence customer emotions, engagement and loyalty? An empirical investigation. Asia Pacific Journal of Marketing and Logistics, ahead-of-print. [Google Scholar] [Crossref]
53. Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006 [Google Scholar] [Crossref]
54. Man, S. S., Ding, M., Li, X., Chan, A. H. S., & Zhang, T. (2024). Acceptance of highly automated vehicles: The role of facilitating condition, technology anxiety, social influence and trust. International Journal of Human–Computer Interaction. [Google Scholar] [Crossref]
55. Mani, Z., & Chouk, I. (2018). Consumer resistance to innovation in services: Challenges and barriers in the Internet of Things era. Journal of Product Innovation Management, 35(5), 780–807. [Google Scholar] [Crossref]
56. Marikyan, D., & Papagiannidis, S. (2024). Technology acceptance model: A review. TheoryHub Book. https://eprints.ncl.ac.uk/302879 [Google Scholar] [Crossref]
57. Mehta, P., Jebarajakirthy, C., Maseeh, H. I., Anubha, A., Saha, R., & Dhanda, K. (2022). Artificial intelligence in marketing: A metanalytic review. Psychology & Marketing, 39(11), 2013–2038. https://doi.org/10.1002/mar.21738 [Google Scholar] [Crossref]
58. Melián-González, S., Gutiérrez-Taño, D., & Bulchand-Gidumal, J. (2021). Predicting the intentions to use chatbots for travel and tourism. Current Issues in Tourism, 24(2), 192–210. https://doi.org/10.1080/13683500.2020.1722216 [Google Scholar] [Crossref]
59. Meuter, M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W. (2005). Choosing among alternative service delivery modes: An investigation of customer trial of self-service technologies. Journal of Marketing, 69(2), 61–83. https://doi.org/10.1509/jmkg.69.2.61.60759 [Google Scholar] [Crossref]
60. Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European journal of marketing, 56(6), 1748-1771. [Google Scholar] [Crossref]
61. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343–364. https://doi.org/10.1007/s12525-020-00411-w [Google Scholar] [Crossref]
62. Muslichah, M. (2018). The effect of self-efficacy and information quality on behavioral intention with perceived usefulness as intervening variable. Journal of Account Business and Management, 25(1), 21–34. [Google Scholar] [Crossref]
63. Na, S., Heo, S., Han, S., Shin, Y., & Roh, Y. (2022). Acceptance model of artificial intelligence (AI)-based technologies in construction firms: Applying the Technology Acceptance Model (TAM) in combination with the Technology–Organisation–Environment (TOE) framework. Buildings, 12(2), 90. [Google Scholar] [Crossref]
64. Norzelan, N. A., Mohamed, I. S., & Mohamad, M. (2024). Technology acceptance of artificial intelligence (AI) among heads of finance and accounting units in the shared service industry. Technological Forecasting and Social Change,198,123022. https://doi.org/10.1016/j.techfore.2023.123022 [Google Scholar] [Crossref]
65. Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International journal of information management, 34(5), 689-703. [Google Scholar] [Crossref]
66. Pan, L., Luo, H., & Gu, Q. (2025). Incorporating AI literacy and AI anxiety into TAM: Unraveling Chinese scholars' behavioral intentions toward adopting AI-assisted literature reading. IEEE Access. [Google Scholar] [Crossref]
67. Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199–3226. [Google Scholar] [Crossref]
68. Pillai, R., Ghanghorkar, Y., Sivathanu, B., Algharabat, R., & Rana, N. P. (2024). Adoption of artificial intelligence (AI) based employee experience (EEX) chatbots. Information Technology & People, 37(1), 449–478. https://doi.org/10.1108/ITP-04-2022-0287 [Google Scholar] [Crossref]
69. Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y. and Podsakoff, N.P. (2003), “Common method biases in [Google Scholar] [Crossref]
70. Portz, J. D., Bayliss, E. A., Bull, S., Boxer, R. S., Bekelman, D. B., Gleason, K., & Czaja, S. (2019). Using the technology acceptance model to explore user experience, intent to use, and use behavior of a patient portal among older adults with multiple chronic conditions: Descriptive qualitative study. Journal of Medical Internet Research, 21(4), e11604. pp. 927-939, doi: 10.1016/j.ijinfomgt.2013.08.007 [Google Scholar] [Crossref]
71. Prakash, A. V., Joshi, A., Nim, S., & Das, S. (2023). Determinants and consequences of trust in AI-based customer service chatbot. The Service Industries Journal, 43(9–10), 642–675. https://doi.org/10.1080/02642069.2023.2166493 [Google Scholar] [Crossref]
72. predicting purchase intention”, International Journal of Information Management, Vol. 33 No. 6, [Google Scholar] [Crossref]
73. Qatawneh, N., Aljaafreh, A., Allymoun, O., & Aladaileh, R. (2024). Critical success factors influencing the behavioral intention to adopt smart home technologies. IEEE Access. [Google Scholar] [Crossref]
74. Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732. [Google Scholar] [Crossref]
75. Ragheb, M. A., Tantawi, P., Farouk, N., & Hatata, A. (2022). Investigating the acceptance of applying chatbot (artificial intelligence) technology among higher education students in Egypt. International Journal of Higher Education Management, 8(2). https://doi.org/10.24052/ijhem/v08n02/art-1 [Google Scholar] [Crossref]
76. Rajaobelina, L., Prom Tep, S., Arcand, M., & Ricard, L. (2021). Creepiness: Its antecedents and impact on loyalty when interacting with a chatbot. Psychology & Marketing, 38(12), 2339-2356. [Google Scholar] [Crossref]
77. Rashid, A. B., & Kausik, M. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. [Google Scholar] [Crossref]
78. Sboui, M., Baati, O., & Sfar, N. (2024). Influencing factors and consequences of chatbot initial trust in AI telecommunication services: A study on Generation Z. The TQM Journal. [Google Scholar] [Crossref]
79. Song, X., Gu, H., Li, Y., Leung, X. Y., & Ling, X. (2024). The influence of robot anthropomorphism and perceived intelligence on hotel guests’ continuance usage intention. Information Technology & Tourism, 26(1), 89–117. https://doi.org/10.1007/s40558-023-00275-8 [Google Scholar] [Crossref]
80. Tian, W., Ge, J., Zhao, Y., & Zheng, X. (2024). AI chatbots in Chinese higher education: Adoption, perception, and influence among graduate students—An integrated analysis utilizing UTAUT and ECM models. Frontiers in Psychology, 15, 1268549. [Google Scholar] [Crossref]
81. Topsakal, Y. (2024). How familiarity, ease of use, usefulness, and trust influence the acceptance of generative artificial intelligence (AI)-assisted travel planning. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2024.2426044 [Google Scholar] [Crossref]
82. Van den Broeck, E., Zarouali, B., & Poels, K. (2019). Chatbot advertising effectiveness: When does the message get through? Computers in Human Behavior, 98, 150–157. https://doi.org/10.1016/j.chb.2019.04.009 [Google Scholar] [Crossref]
83. Van Eeuwen, M. (2017). Mobile conversational commerce: Messenger chatbots as the next interface between businesses and consumers [Master's thesis, University of Twente]. http://purl.utwente.nl/essays/71706 [Google Scholar] [Crossref]
84. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365. [Google Scholar] [Crossref]
85. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. [Google Scholar] [Crossref]
86. Wang, C. L. (2024). Editorial – What is an interactive marketing perspective and what are emerging research areas? Journal of Research in Interactive Marketing, 18(2), 161–165. [Google Scholar] [Crossref]
87. Zhang, B., Zhu, Y., Deng, J., Zheng, W., Liu, Y., Wang, C., & Zeng, R. (2023). “I am here to assist your tourism”: Predicting continuance intention to use AI-based chatbots for tourism. Does gender really matter? International Journal of Human–Computer Interaction, 39(9), 1887–1903. https://doi.org/10.1080/10447318.2022.2124345 [Google Scholar] [Crossref]
88. Note: https://www.precedenceresearch.com/chatbot-market Report [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Impact of Ownership Structure on Dividend Payout Policy of Listed Plantation Companies in Sri Lanka
- Urban Sustainability in North-East India: A Study through the lens of NER-SDG index
- Performance Assessment of Predictive Forecasting Techniques for Enhancing Hospital Supply Chain Efficiency in Healthcare Logistics
- The Fractured Self in Julian Barnes' Postmodern Fiction: Identity Crisis and Deflation in Metroland and the Sense of an Ending
- Impact of Flood on the Employment, Labour Productivity and Migration of Agricultural Labour in North Bihar