FloraHub: An IoT-Based Smart Plant Hydration System with Real-Time Monitoring and Cost Analytics
Authors
Allgo Technologies Sdn. Bhd. Kuala Lumpur (Malaysia)
Fakulti Teknologi Maklumat dan Komunikasi Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal (Malaysia)
Fakulti Teknologi Maklumat dan Komunikasi Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal (Malaysia)
Fakulti Teknologi Maklumat dan Komunikasi Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal (Malaysia)
Fakulti Teknologi Maklumat dan Komunikasi Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.910000205
Subject Category: Computer Science
Volume/Issue: 9/10 | Page No: 2453-2463
Publication Timeline
Submitted: 2025-10-07
Accepted: 2025-10-14
Published: 2025-11-07
Abstract
The "FloraHub: Smart Plant Hydration System" project tackles the shortcomings of traditional plant watering methods by proposing an innovative IoT-based solution. Conventional timed watering systems often result in water wastage and inadequate hydration, adversely affecting plant health and increasing expenses. To address these challenges, the project introduces an automated watering system integrated with soil moisture sensors and water flow sensors. These sensors continuously monitor soil moisture levels in real-time, triggering watering only when necessary, while also providing users the option to utilize a timer or tap a button on the mobile app for manual watering. Additionally, the incorporation of Grafana analytics enables comprehensive data analysis, offering insights into soil moisture trends, watering patterns, and water usage. By leveraging technology and data-driven solutions, the project aims to enhance operational efficiency, minimize water consumption, and promote environmentally responsible practices in plant care. The FloraHub system represents a significant advancement in plant management, providing users with a user-friendly and sustainable approach to ensure optimal plant growth and health.
Keywords
IoT, Smart Irrigation, Sustainable Plant Care, Water Flow Sensor
Downloads
References
1. Ramesh, S., Karmukilan, N., Lavanya, R., Muvinkumar, M., & Samuthra, P. (2025). IoT Based Smart AI Plant Irrigation System. International Journal of Engineering Research & Technology, 13(5). https://doi.org/10.17577/IJERTCONV13IS05025 [Google Scholar] [Crossref]
2. Yap, Z. Y., & Abd Rahman, R. (2024). Development of Smart Fertigation System for Chili Plantation in Greenhouse Environment. Research Progress in Mechanical and Manufacturing Engineering, 5(2), 227-237. https://publisher.uthm.edu.my/periodicals/index.php/rpmme/article/view/17561 [Google Scholar] [Crossref]
3. Mohd Najid @ Zakaria, N. I., & Rosli Omar. (2024). IoT-based Plant Watering System. Evolution in Electrical and Electronic Engineering, 5(1), 397-402. [Google Scholar] [Crossref]
4. Zi, O. Y., & Abd Rahman, R. (2024). Study on Effectiveness of IoT-based Automatic Plant Watering System on Plant Grow. Journal of Design for Sustainable and Environment, 6(1), 34-39. [Google Scholar] [Crossref]
5. Sidik, A. R., Tawakal, A., Sumirat, G. S., & Narputro, P. (2025). Smart Irrigation Based on Soil Moisture Sensors with Photovoltaic Energy for Efficient Agricultural Water Management: A Systematic Literature Review. Engineering Proceedings, 107(1), Article 17. https://doi.org/10.3390/engproc2025107017 [Google Scholar] [Crossref]
6. Kushwaha et al. (2024). Developing a smart irrigation monitoring system employing the wireless sensor network for agricultural water management. Journal of Hydroinformatics. [Google Scholar] [Crossref]
7. Musa, P., & Basir, M. (2023). Wireless Sensor Networks for Precision Agriculture: A Review. PMC. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC10780601/ [Google Scholar] [Crossref]
8. Ali, A., Hussain, T., & Zahid, A. (2025). Smart Irrigation Technologies and Prospects for Enhancing Water Use Efficiency for Sustainable Agriculture. AgriEngineering, 7(4), 106. https://doi.org/10.3390/agriengineering7040106 [Google Scholar] [Crossref]
9. Prodanović, R., Rančić, D., Vulić, I., Zorić, N., Bogićević, D., Ostojić, G., Sarang, S., & Stankovski, S. (2020). Wireless Sensor Network in Agriculture: Model of Cyber Security. Sensors, 20(23), 6747. https://doi.org/10.3390/s20236747 [Google Scholar] [Crossref]
10. Ahmadi Pargo, T., Akbarpour Shirazi, M., & Fadai, D. (2025). Smart and Efficient IoT-Based Irrigation System Design: Utilizing a Hybrid Agent-Based and System Dynamics Approach. arXiv. https://arxiv.org/abs/2502.18298 [Google Scholar] [Crossref]
11. Kunt, Y. E. (2025). Development of a Smart Autonomous Irrigation System Using IoT and AI. arXiv. https://arxiv.org/abs/2506.11835 [Google Scholar] [Crossref]
12. Wei, X., et al. (2025). Intelligent and automatic irrigation system based on internet of things. Scientific Reports. https://doi.org/10.1038/s41598-025-98137-2 [Google Scholar] [Crossref]
13. Abdelmoneim, A. A., Khadra, R., Elkamouh, A., Derardja, B., & Dragonetti, G. (2024). Towards affordable precision irrigation: An experimental comparison of weather-based and soil water potential-based irrigation using low-cost IoT-tensiometers on drip irrigated lettuce. Sustainability, 16(1), 306. https://doi.org/10.3390/su16010306 [Google Scholar] [Crossref]
14. Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart sensors and smart data for precision agriculture: A review. Sensors, 24(8), 2647. https://doi.org/10.3390/s24082647 [Google Scholar] [Crossref]
15. Low Power IoT Electronics in Precision Irrigation. (2023). Smart Agricultural Technology, 5. Elsevier. https://doi.org/10.1016/j.atech.2023.100310 [Google Scholar] [Crossref]
16. Dong, Y., Werling, B., Cao, Z., Li, G., et al. (2024). Implementation of an in-field IoT system for precision irrigation management. Frontiers in Water, 15 February 2024. https://doi.org/10.3389/frwa.2024.1353597 [Google Scholar] [Crossref]
17. Jabbari, A., Teli, T. A., Masoodi, F., Reegu, F. A., Uddin, M., & Albakri, A. (2024). Prioritizing factors for the adoption of IoT-based smart irrigation in Saudi Arabia: A GRA/AHP approach. Frontiers in Agronomy, 6, 1335443. https://doi.org/10.3389/fagro.2024.1335443 [Google Scholar] [Crossref]
18. Kaur, V., Sharma, M., & Gupta, N. (2024). Developing a hybrid irrigation system for smart agriculture using IoT sensors and machine learning in Sri Ganganagar, Rajasthan. Sensors, Article ID 6676907. https://doi.org/10.1155/2024/6676907 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- What the Desert Fathers Teach Data Scientists: Ancient Ascetic Principles for Ethical Machine-Learning Practice
- Comparative Analysis of Some Machine Learning Algorithms for the Classification of Ransomware
- Comparative Performance Analysis of Some Priority Queue Variants in Dijkstra’s Algorithm
- Transfer Learning in Detecting E-Assessment Malpractice from a Proctored Video Recordings.
- Dual-Modal Detection of Parkinson’s Disease: A Clinical Framework and Deep Learning Approach Using NeuroParkNet