Investigation of Zinc Cobaltite (ZnCo₂O₄) as a Hole Transport Layer for Perovskite Solar Cells: Implications for Renewable-Energy Research and Innovation

Authors

Muhammad A. I. Zulkifli

Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Zul A. F. M. Napiah

Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Muhammad I. Idris

Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Abd S. Ja’afar

Fakulti Teknologi dan Kejuruteraan Elektronik dan Computer (FTKEK), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Muhammad R. Kamarudin

Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Noorazlan S. Zainudin

Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), University Technical Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

Noorezal A. M. Napiah

Universiti Technology MARA (UiTM), Cawangan Pulau Pinang Kampus Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia)

Mohamad A. M. Idin

Universiti Technology MARA (UiTM), Cawangan Pulau Pinang Kampus Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.910000325

Subject Category: Renewable energy

Volume/Issue: 9/10 | Page No: 3977-3988

Publication Timeline

Submitted: 2025-10-12

Accepted: 2025-10-18

Published: 2025-11-11

Abstract

This study investigates Zinc Cobaltite (ZnCo₂O₄) as a potential hole transport layer (HTL) for perovskite solar cells (PSCs) to address the long-term performance degradation observed in conventional HTL materials. Owing to its high stability, wide bandgap, and favorable charge-transport characteristics, ZnCo₂O₄ offers strong potential for efficient carrier extraction and transport in PSC architectures. The HTL plays a critical role in selectively extracting and transferring positive charge carriers (holes) to the anode while maintaining overall device stability. In this work, ZnCo₂O₄-based PSCs were simulated using the GPVDM software, and the Taguchi optimization method was employed to determine the optimal design parameters for achieving maximum power conversion efficiency (PCE). The key parameters considered include HTL thickness, operating temperature, and bandgap energy. Simulation results reveal that a ZnCo₂O₄ thickness of 200 nm yields a PCE of 28.25% using GPVDM. Through Taguchi optimization, the highest PCE of 32.23% was achieved with an optimized configuration comprising a 300 nm ZnCo₂O₄ layer, 300 K temperature, 2.0 eV bandgap, and mobility factors of 9.14 × 10⁻⁶ cm² V⁻¹ s⁻¹ for both electrons and holes. These findings demonstrate that ZnCo₂O₄ is a promising HTL candidate for high-efficiency and thermally stable PSCs. Further experimental validation and interface engineering could enhance its performance and enable its integration into next-generation perovskite photovoltaic devices.

Keywords

Zinc Cobaltite, Hole Transport Layer, GPVDM, Taguchi method

Downloads

References

1. R. A. Afre and D. Pugliese, “Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies,” Micromachines, vol. 15, no. 2, p. 192, 2024. [Google Scholar] [Crossref]

2. “An Open-Access Database and Analysis Tool for Perovskite Solar Cells,” NREL, 2022. [Google Scholar] [Crossref]

3. G. Perrakis et al., “Efficient and environmental-friendly perovskite solar cells via embedding plasmonic nanoparticles: an optical simulation study on realistic device architecture,” Optics express, vol. 27, no. 22, 2019. [Google Scholar] [Crossref]

4. W. E. I. Sha et al., “Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model,” Advanced Energy Materials, vol. 8, no. 8, 2018. [Google Scholar] [Crossref]

5. B. R. Jheng et al., “Using ZnCo₂O₄ Nanoparticles as the Hole Transport Layer to Improve Long-Term Stability of Perovskite Solar Cells,” Sci. Rep., 2022. [Google Scholar] [Crossref]

6. S. Sitole et al., “Electrochemical Performance of ZnCo₂O₄: Versatility in Sensors, Batteries, Photovoltaics and Supercapacitors,” Materials, vol. 9, no. 3, 2025. [Google Scholar] [Crossref]

7. S. C. Lizbeth, A. M. Carlos and R. D. Bernardo, "A Review of Simulation Tools for Thin-Film Solar Cells," Materials, 17, 5213, 2024. [Google Scholar] [Crossref]

8. K. Mishra and R. K. Shukla, “Electrical and optical simulation of typical perovskite solar cell by GPVDM software,” Materials Today: Proceedings, 2012. [Google Scholar] [Crossref]

9. D. Puspita, R. D. Syarifah, and N. S. Rizal, "Optimization of Layers Thickness Design of Perovskite Solar Cell (PSC) Using GPVDM Simulation," Comput. Exp. Res. Mater. Renew. Energy, 2019. [Google Scholar] [Crossref]

10. L. Chen, L. Qiu, L. Song, Y. Yuan, J. Xiong and P. Du, "CuGaO2 nanosheets and cucro2 nanoparticles mixed with Spiro-OMeTAD as the hole-transport layer in perovskite solar cells," ACS Applied Nano Materials, 2022. [Google Scholar] [Crossref]

11. Zhou, D., Zhou, T., Tian, Y., Zhu, X., & Tu, Y., “Perovskite-based solar cells: Materials, methods, and future perspectives,” Journal of Nanomaterials, 2018. [Google Scholar] [Crossref]

12. Li, S., Cao, Y.-L., Li, W.-H., & Bo, Z.-S., “A brief review of hole transporting materials commonly used in perovskite solar cells,” Rare Metals, 40(10), 2712–2729, 2021. [Google Scholar] [Crossref]

13. Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., & Hao, Y., “Device simulation of inverted CH3NH3PBI3−XCLX perovskite solar cells based on PCBM electron transport layer and NIO hole transport layer,” Solar Energy, 169, 11–18, 2018. [Google Scholar] [Crossref]

14. Yu, Z., Hagfeldt, A., & Sun, L., “The application of transition metal complexes in Hole-transporting layers for perovskite solar cells: Recent progress and future perspectives,” Coordination Chemistry Reviews, 406, 213143, 2020. [Google Scholar] [Crossref]

15. Syafiq, U., Ataollahi, N., & Scardi, P., “Progress in CZTS as Hole Transport Layer in perovskite solar cell,” Solar Energy, 196, 399–408. 2020. [Google Scholar] [Crossref]

16. Miao, X., Wang, S., Sun, W., Zhu, Y., Du, C., Ma, R., & Wang, C., “Room-temperature electrochemical deposition of Ultrathin CuOx film as Hole Transport Layer for perovskite solar cells,” Scripta Materialia, 165, 134–139, 2019. [Google Scholar] [Crossref]

17. N. Y. Nia, M. Bonomo, M. Zendehdel, E. Lamanna, M. M. H. Desoky, B. Paci, F. Zurlo, A. Generosi, C. Barolo, G. Viscardi, P. Quagliotto and A. D. Carlo, “Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells,” ACS Sustainable Chem. Eng., 9, 5061-5073, 2021. [Google Scholar] [Crossref]

18. Wang, H., Yu, Z., Jiang, X., Li, J., Cai, B., Yang, X., & Sun, L., “Efficient and stable inverted planar perovskite solar cells employing Cui as hole-transporting layer prepared by solid-gas transformation,” Energy Technology, 5(10), 1836–1843, 2017. [Google Scholar] [Crossref]

19. Jung, M., Kim, Y. C., Jeon, N. J., Yang, W. S., Seo, J., Noh, J. H., & Il Seok, S., “Thermal stability of Cuscn Hole conductor-based perovskite solar cells,” ChemSusChem, 9(18), 2592–2596, 2016. [Google Scholar] [Crossref]

20. Zhao, Q., Wu, R., Zhang, Z., Xiong, J., He, Z., Fan, B., Dai, Z., Yang, B., Xue, X., Cai, P., Zhan, S., Zhang, X., & Zhang, J., “Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer,” Organic Electronics, 71, 106–112, 2019. [Google Scholar] [Crossref]

21. Lee, B., Yun, A. J., Kim, J., Gil, B., Shin, B., & Park, B., “Aminosilane‐modified CuGaO2 nanoparticles incorporated with CuSCn as a hole‐transport layer for efficient and stable perovskite solar cells,” Advanced Materials Interfaces, 6(22), 1901372, 2019. [Google Scholar] [Crossref]

22. Yang, B., Ouyang, D., Huang, Z., Ren, X., Zhang, H., & Choy, W. C., “Multifunctional synthesis approach of in:cucro2 nanoparticles for hole transport layer in high‐performance perovskite Solar Cells,” Advanced Functional Materials, 29(34), 1902600, 2019. [Google Scholar] [Crossref]

23. Han, J., Tu, Y., Liu, Z., Liu, X., Ye, H., Tang, Z., Shi, T., & Liao, G., “Efficient and stable inverted planar perovskite solar cells using Dopant-free CuPc as Hole Transport Layer,” Electrochimica Acta, 273, 273–281, 2018. [Google Scholar] [Crossref]

24. Fahsyar, P. N., Ludin, N. A., Ramli, N. F., Sepeai, S., Suait, M. S., Ibrahim, M. A., Teridi, M. A., & Sopian, K., “Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure,” Applied Physics A, 127(5), 2021. [Google Scholar] [Crossref]

25. Shasti, M., & Mortezaali, A., “Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole‐transport materials for application in perovskite solar cells,” Physica status solidi, 216(18), 1900337, 2019. [Google Scholar] [Crossref]

26. Reza, K. M., Mabrouk, S., & Qiao, Q., “A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells,” Proc. Nat. Res. Soc, 2(1), 02004, 2018. [Google Scholar] [Crossref]

27. J. Bett, M. Hermle, and A. Hinsch, “Perovskite Solar Cells: A Review of Materials, Device Architectures, and Stability,” Frontiers in Energy Research, vol. 9, p. 676458, 2021. [Google Scholar] [Crossref]

28. D. Huang et al., “Recent Advances in Nanostructured Inorganic Hole‐Transporting Materials for Perovskite Solar Cells,” Nanomaterials, vol. 12, no. 15, p. 2592, 2022. [Google Scholar] [Crossref]

29. M. Kim et al., “Influence of Hole Transport Layer Thickness on the Performance of Perovskite Solar Cells,” Nanomaterials, vol. 12, no. 13, p. 2220, 2022. [Google Scholar] [Crossref]

30. Y. Zhou and M. Yang, “Inorganic Hole Transport Materials for Perovskite Solar Cells,” Small, vol. 16, no. 8, p. 1902579, 2020. [Google Scholar] [Crossref]

31. M. A. Khattak, A. Ali, and N. Iqbal, “Application of Taguchi Method in Optimization of Photovoltaic Parameters for Perovskite Solar Cells,” Energies, vol. 14, no. 18, p. 5649, 2021. [Google Scholar] [Crossref]

32. N. A. Zulkifli et al., “Optimization of Perovskite Solar Cell Parameters Using Taguchi Method and ANOVA,” International Journal of Energy Research, vol. 46, no. 7, pp. 10321–10334, 2022. [Google Scholar] [Crossref]

33. H. N. Majeed, M. A. S. Khan, and J. H. Kim, “Statistical Optimization of Photovoltaic Device Parameters Using Taguchi Design of Experiment,” Heliyon, vol. 9, no. 2, p. e13078, 2023. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles