Proposition of Ant Colony and Perturb and Observe MPPT Combination for Photovoltaic System

Authors

Kharismi Burhanudin

Centre for Advanced Computing Technology (C-ACT), Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka (Malaysia)

Mohd Nazrien Zaraini

Centre for Advanced Computing Technology (C-ACT), Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka (Malaysia)

Muhammad Faheem Mohd Ezani

Centre for Advanced Computing Technology (C-ACT), Fakulti Kecerdasan Buatan dan Keselamatan Siber (FAIX), Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka (Malaysia)

Muhamad Nabil Hidayat

College of Engineering, UiTM Shah Alam, Selangor (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.910000725

Subject Category: Engineering & Technology

Volume/Issue: 9/10 | Page No: 8814-8830

Publication Timeline

Submitted: 2025-11-01

Accepted: 2025-11-08

Published: 2025-11-22

Abstract

This research presents a novel hybrid Maximum Power Point Tracking (MPPT) technique that combines Ant Colony Optimization (ACO) with the Perturb and Observe (P&O) method to enhance the efficiency and convergence speed of photovoltaic (PV) systems. The ACO MPPT, based on swarm intelligence, is utilized for its ability to conduct a global search for the maximum power point. In contrast, the P&O method provides steady-state tracking with low computational complexity. By integrating these two approaches, the research aims to leverage their respective strengths to achieve faster and more reliable convergence under varying environmental conditions. The study employs the NTR 5E3E monocrystalline PV module (173.5W) as the test subject, with the implementation carried out in a MATLAB Simulink environment. The experimental results demonstrate that the hybrid approach outperforms the standalone P&O and ACO MPPT methods in terms of convergence speed, accuracy, and stability, indicating promising potential for practical applications in PV systems.

Keywords

Aco, Pso, Fpo, Pno, Mppt, Pv, Matlab Simulink

Downloads

References

1. M. H. Ali, M. Zakaria, and S. El-Tawab, “A comprehensive study of recent maximum power point tracking techniques for photovoltaic systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-96247-5. [Google Scholar] [Crossref]

2. A. Elsafi, A. A. Almohammedi, M. Balfaqih, Z. Balfagih, and S. Sabri, “Comparative analysis of maximum power point tracking methods for power optimization in grid tied photovoltaic solar systems,” Discover Applied Sciences, vol. 7, no. 9, Sep. 2025, doi: 10.1007/s42452-025-07606-w. [Google Scholar] [Crossref]

3. A. B. Djilali et al., “Enhanced variable step sizes perturb and observe MPPT control to reduce energy loss in photovoltaic systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-95309-y. [Google Scholar] [Crossref]

4. D. Sibtain, M. M. Gulzar, K. Shahid, I. Javed, S. Murawwat, and M. M. Hussain, “Stability Analysis and Design of Variable Step-Size P&O Algorithm Based on Fuzzy Robust Tracking of MPPT for Standalone/Grid Connected Power System,” Sustainability (Switzerland), vol. 14, no. 15, Aug. 2022, doi: 10.3390/su14158986. [Google Scholar] [Crossref]

5. B. Babes, A. Boutaghane, and N. Hamouda, “A novel nature-inspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines,” Neural Comput Appl, vol. 34, no. 1, pp. 299–317, Jan. 2022, doi: 10.1007/s00521-021-06393-w. [Google Scholar] [Crossref]

6. M. Yaich, Y. Dhieb, M. Bouzguenda, and M. Ghariani, “Metaheuristic Optimization Algorithm of MPPT Controller for PV system application,” in E3S Web of Conferences, EDP Sciences, Jan. 2022. doi: 10.1051/e3sconf/202233600036. [Google Scholar] [Crossref]

7. N. Priyadarshi, V. K. Ramachandaramurthy, S. Padmanaban, and F. Azam, “An ant colony optimized mppt for standalone hybrid pv-wind power system with single cuk converter,” Energies (Basel), vol. 12, no. 1, Jan. 2019, doi: 10.3390/en12010167. [Google Scholar] [Crossref]

8. M. Sedraoui et al., “Development of a fixed-order controller for a robust P&O-MPPT strategy to control poly-crystalline solar PV energy systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-86477-y. [Google Scholar] [Crossref]

9. B. Naima et al., “Enhancing MPPT optimization with hybrid predictive control and adaptive P&O for better efficiency and power quality in PV systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-10335-0. [Google Scholar] [Crossref]

10. [K. H. Chao and M. N. Rizal, “A hybrid mppt controller based on the genetic algorithm and ant colony optimization for photovoltaic systems under partially shaded conditions,” Energies (Basel), vol. 14, no. 10, May 2021, doi: 10.3390/en14102902. [Google Scholar] [Crossref]

11. K.Burhanudin, N.A.Kamarzaman, A.A.A.Samat, A.I.Tajudin, S.S.Ramli, and N.Hidayat, Implementing Boost Converter Algorithm with PSO for Photovoltaic System During Partial Shading Condition. Johor Bharu: IEEE, 2015. doi: 10.1109/CENCON.2015.7409576. [Google Scholar] [Crossref]

12. A. Nasir, I. Rasool, D. Sibtain, and R. Kamran, “Adaptive Fractional Order PID Controller Based MPPT for PV Connected Grid System Under Changing Weather Conditions,” Journal of Electrical Engineering and Technology, vol. 16, no. 5, pp. 2599–2610, Sep. 2021, doi: 10.1007/s42835-021-00782-w. [Google Scholar] [Crossref]

13. X. Liu et al., “Simulation-Based Evaluation of Power Efficiency and Output Capacitance in Standalone PV MPPT Buck Converters Using 200 V p-GaN HEMTs,” Journal of Electrical Engineering and Technology, vol. 20, no. 6, pp. 3875–3887, Sep. 2025, doi: 10.1007/s42835-025-02334-y. [Google Scholar] [Crossref]

14. V. C. Kotak, P. Tyagi, and A. Professor, “DC To DC Converter in Maximum Power Point Tracker,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO Certified Organization), vol. 3297, no. 12, pp. 6115–6125, 2007. [Google Scholar] [Crossref]

15. M. Q. Taha, M. K. Mohammed, and B. El Heiba, “Metaheuristic Optimization of Maximum Power Point Tracking in PV Array under Partial Shading,” Engineering, Technology and Applied Science Research, vol. 14, no. 3, pp. 14628–14633, Jun. 2024, doi: 10.48084/etasr.7385. [Google Scholar] [Crossref]

16. H. Azizi-Monfared and M. Ghanbarisabagh, “Hybrid Intelligent Control and Maximum Power Point Tracking of a Solar Generator under Variable Irradiance and Temperature using a Multi-method Approach,” International Journal of Engineering, Transactions B: Applications, vol. 39, no. 6, pp. 1462–1481, Jun. 2026, doi: 10.5829/ije.2026.39.06c.14. [Google Scholar] [Crossref]

17. S. Vadi, “Design and Implementation of an Off-Grid Smart Street Lighting System Using LoRaWAN and Hybrid Renewable Energy for Energy-Efficient Urban Infrastructure,” Sensors, vol. 25, no. 17, Sep. 2025, doi: 10.3390/s25175579. [Google Scholar] [Crossref]

18. F. Id Ouissaaden, H. Kamel, and S. Dlimi, “Simulation and Performance Evaluation of a Photovoltaic Water Pumping System with Hybrid Maximum Power Point Technique (MPPT) for Remote Rural Areas,” Processes, vol. 13, no. 9, Sep. 2025, doi: 10.3390/pr13092867. [Google Scholar] [Crossref]

19. R. S. Prasad and R. Thiyagarajan, “Kinetic gas molecular optimization method for PV system under partial shaded condition,” International Journal of Intelligent Engineering and Systems, vol. 13, no. 4, pp. 33–43, 2020, doi: 10.22266/IJIES2020.0831.04. [Google Scholar] [Crossref]

20. B. Kothapalli and G. T. Sundar Rajan, “Hybrid beluga whale optimization based MPPT for photovoltaic powered open end winding induction motor drives,” Sci Rep, vol. 15, no. 1, Oct. 2025, doi: 10.1038/s41598-025-15680-8. [Google Scholar] [Crossref]

21. A. W. Ibrahim et al., “A high-speed MPPT based horse herd optimization algorithm with dynamic linear active disturbance rejection control for PV battery charging system,” Sci Rep, vol. 15, no. 1, p. 3229, Dec. 2025, doi: 10.1038/s41598-025-85481-6. [Google Scholar] [Crossref]

22. M. T. Kaaitan, R. A. Fayadh, Z. S. AL-sagar, S. J. Yaqoob, M. Bajaj, and M. S. Geremew, “A novel global MPPT method based on sooty tern optimization for photovoltaic systems under complex partial shading,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-13007-1. [Google Scholar] [Crossref]

23. Q. Pang, F. Zhang, S. Han, T. Zhou, and Y. Wang, “A new two-stage MPPT technique for enhancing the performance of PV system,” Electrical Engineering, vol. 107, no. 8, pp. 10899–10909, Aug. 2025, doi: 10.1007/s00202-025-03067-x. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles