Revisiting Technology Acceptance: A Conceptual Study on Chatbot Adoption in Malaysia’s Public Sector

Authors

Faezah Othman

Faculty of Business Management, Universiti Teknologi MARA, Melaka (Malaysia)

Goh Mei Ling

Faculty of Business, Multimedia University, Melaka (Malaysia)

Nor Fauziana Ibrahim

Faculty of Business, Multimedia University, Melaka (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.91100053

Subject Category: Management

Volume/Issue: 9/11 | Page No: 663-670

Publication Timeline

Submitted: 2025-11-07

Accepted: 2025-11-14

Published: 2025-11-28

Abstract

The adoption of chatbots in the public sector has the potential to significantly enhance public service delivery. In this regard, government agencies are seeking to leverage technology to enhance service delivery, improve efficiency, and provide round-the-clock assistance to citizens. Understanding chatbots adoption intention among Society towards public sector in Malaysia will enable the resources to be reallocated more efficiently as well as to help in developing chatbots that are culturally and socially relevant. This will then improve the effectiveness and acceptance level of the chatbots adoption from the public community. Thus, investigating the AI chatbots adoption intention towards the public sector among society in Malaysia is crucial. Literature has shown that study on chatbots adoption intention among society towards the public sector in Malaysia is still lacking. Previous studies have suggested future research to explore the effectiveness of chatbot services for purposes beyond health information and healthcare institutions and focus on user-centric approaches to AI chatbot development. Therefore, this study aims to access the chatbots adoption intention among society towards the public sector in Malaysia and examine the mediating role of attitude in this research context. In this study, quantitative research approaches will be employed with target population of Malaysian community. Convenience sampling will be used to recruit a total of 150 respondents for this study. Data will be collected using a set of self-administered questionnaires and analysed using SPSS and SmartPLS. This research would be able to provide an insight into chatbots adaption intention of Malaysian community towards the public sector. The findings of this study would also be able to provide some practical implications for the public sector to enhance service delivery for creating more user-friendly, trusted, and widely accepted AI solutions in the public sector.

Keywords

chatbot, technology acceptance, conceptual, innovation

Downloads

References

1. Anez, R., Raja, I., Aziz, A., & Ahmad, N. R. (2023). Acceptability of Malaysian Working Adults Towards MOH Chatbot Services in Disseminating COVID-19 Information. 2, 168–180. [Google Scholar] [Crossref]

2. Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54(101473). [Google Scholar] [Crossref]

3. Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International journal of medical informatics, 78(2), 115-126. [Google Scholar] [Crossref]

4. Alshare, K. A., & Lane, P. L. (2011). Predicting student-perceived learning outcomes and satisfaction in ERP courses: An empirical investigation. Communications of the association for information systems, 28(1), 34. [Google Scholar] [Crossref]

5. Burton, J. W., Stein, M. K., & Jensen, T. B. (2020). A systematic review of algorithm aversion in augmented decision making. Journal of behavioral decision making, 33(2), 220-239. [Google Scholar] [Crossref]

6. Chatterjee S., N.P. Rana, Y.K. Dwivedi, A.M. Baabdullah, Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model, Technol. Forecast. Soc. Change 170 (2021) 120880, https://doi.org/10.1016/j.techfore.2021.120880. [Google Scholar] [Crossref]

7. Choo, A. (2022). Chatbots In Malaysia and The Benefits for Your Business. https://mydbs.asia/chatbots-in-malaysia-and-the-benefits-for-your-business/. [Google Scholar] [Crossref]

8. Choung, H., David, P., & Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(9), 1727-1739. [Google Scholar] [Crossref]

9. Davis, F. D. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Quarterly (13:3), 1989, pp. 319-339. [Google Scholar] [Crossref]

10. D. Lee, S.N. Yoon, Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges, Int. J. Environ. Res. Publ. Health 18 (2021) 271, https://doi.org/10.3390/ijerph18010271. [Google Scholar] [Crossref]

11. Ding, Y., & Najaf, M. (2024). Interactivity, humanness, and trust: a psychological approach to AI chatbot adoption in e-commerce. BMC Psychol 12, 595. https://doi.org/10.1186/s40359-024-02083-z. [Google Scholar] [Crossref]

12. Dwivedi Y.K., Rana N.P., Jeyaraj A., Clement M., Williams M.D. (2017). Re-Examining the unified theory of acceptance and use of technology (UTAUT): towards a revised theoretical model, Inf. Syst. Front 21, 719–734, https://doi.org/10.1007/s10796-017-9774-y. [Google Scholar] [Crossref]

13. Elmahjub, E. (2023). Artificial Intelligence (AI) in Islamic Ethics: Towards Pluralist Ethical Benchmarking for AI. Philosophy & Technology, 36(4), 73. [Google Scholar] [Crossref]

14. Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services, 30, 140–164. https://doi.org/10.1016/j.jretconser.2016.01.016 [Google Scholar] [Crossref]

15. Fishbein, M., and Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Addison-Wesley, Reading, MA, 1975. [Google Scholar] [Crossref]

16. Følstad, A., & Mærøe, A. (2022). The Ethics of Chatbots in Public Sector Service Provision. CUI@ CHI2022: Ethics of Conversational User Interfaces. ACM, New York, NY, USA. [Google Scholar] [Crossref]

17. Gamal Aboelmaged, M. (2010). Predicting e‐procurement adoption in a developing country: An empirical integration of technology acceptance model and theory of planned behaviour. Industrial Management & Data Systems, 110(3), 392-414. [Google Scholar] [Crossref]

18. García de Blanes Sebastián, M., Sarmiento Guede, J. R., & Antonovica, A. (2022). Application and extension of the UTAUT2 model for determining behavioral intention factors in use of the artificial intelligence virtual assistants. Frontiers in Psychology, 13, 993935. [Google Scholar] [Crossref]

19. Gatzioufa, P. & Saprikis, V. (2022). A literature review on users’behavioral intention toward chatbots’ adoption. Applied Computing and Informatics, https://DOI 10.1108/ACI-01-2022-0021. [Google Scholar] [Crossref]

20. Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660. [Google Scholar] [Crossref]

21. Haoyue, L. L., & Cho, H. (2024). Factors influencing intention to engage in human–chatbot interaction: examining user perceptions and context culture orientation. Universal Access in the Information Society, 0123456789. https://doi.org/10.1007/s10209-023-01087-7. [Google Scholar] [Crossref]

22. Hulland, J., Baumgartner, H and Smith, K. M. (2017). Marketing survey research best practicesK evidence and recommendations from a review of JAMS articles. Journal of the Academy Marketing Science, 46 (1), 92-108. [Google Scholar] [Crossref]

23. Jager J, Putnick DL, Bornstein MH. II. More Than Just Convenient: The Scientific Merits Of Homogeneous Convenience Samples. Monogr Soc Res Child Dev. 2017 Jun, 82(2), 13-30. Doi: 10.1111/mono.12296. PMID: 28475254; PMCID: PMC5606225. [Google Scholar] [Crossref]

24. Jais, R., Ngah, A. H., Rahi, S., Rashid, A., Ahmad, S. Z., & Mokhlis, S. (2024). Chatbots adoption intention in public sector in Malaysia from the perspective of TOE framework. The moderated and mediation model. Journal of Science and Technology Policy Management, Cd. https://doi.org/10.1108/JSTPM-04-2024-0151 [Google Scholar] [Crossref]

25. Jyothsna, M., Subbaiah, P. V., & Natalia, K. (2024). Exploring the Chatbot usage intention-A mediating role of Chatbot initial trust. Heliyon, 10(12), 1–11. https://doi.org/10.1016/j.heliyon.2024.e33028 [Google Scholar] [Crossref]

26. Kwangsawad, A., & Jattamart, A. (2022). Overcoming customer innovation resistance to the sustainable adoption of chatbot services: A community-enterprise perspective in Thailand. Journal of Innovation and Knowledge, 7(3), 100211. https://doi.org/10.1016/j.jik.2022.100211 [Google Scholar] [Crossref]

27. Konda, Sreedhar. (2019). Ensuring Trust and Security in AI: Challenges and Solutions for Safe Integration Introduction. 3. 71-93. 10.5281/zenodo.10779269. [Google Scholar] [Crossref]

28. Lai, C. Y., Cheung, K. Y., Chan, C. S., & Law, K. K. (2024). Integrating the adapted UTAUT model with moral obligation, trust and perceived risk to predict ChatGPT adoption for assessment support: A survey with students. Computers and Education: Artificial Intelligence, 6(2024), 1-13. [Google Scholar] [Crossref]

29. Li, L., Peng, W., Rheu, M.J. (2024). Factors Predicting Intentions of Adoption and Continued Use of Artificial Intelligence Chatbots for Mental Health:Examining the Role of UTAUT Model, Stigma, Privacy Concerns, and Artificial Intelligence Hesitancy. Telemedicine and e-Health, 30(3), 722-730. [Google Scholar] [Crossref]

30. Liao, Y.-K., Nguyen, H.-L. T., Dao, T. C., Nguyen, P.-T. T., & Sophea, H. (2023). The antecedents of customers’ attitude and behavioral intention of using e-banking: The moderating roles of social influence and customers’ traits. Journal of Financial Services Marketing, 29, 1037–1061 [Google Scholar] [Crossref]

31. Liu, K., & Tao, D. (2022). The roles of trust, personalization, loss of privacy, and anthropomorphism in public acceptance of smart healthcare services. Computers in Human Behavior, 127, 107026. [Google Scholar] [Crossref]

32. Mahmud, H., Islam, A. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175, 121390. [Google Scholar] [Crossref]

33. Malik, P., Gautam, S., & Srivastava, S. (2020). A Study on Behaviour Intention for using Chatbots. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 332–338. https://doi.org/10.1109/ICRITO48877.2020.9197782 [Google Scholar] [Crossref]

34. Microsoft Malaysia, (2024). Supercharging public services in the age of AI. https://news.microsoft.com/en-my/2024/10/22/supercharging-public-services-in-the-age-of-ai/. [Google Scholar] [Crossref]

35. Mogaji, E., Balakrishnan, J., Nwoba, A. C., & Nguyen, N. P. (2021). Emerging-market consumers’ interactions with banking chatbots. Telematics and Informatics, 65(101711). [Google Scholar] [Crossref]

36. Nasution, M. D. T. P., Rafiki, A., Rossanty, Y., & Pahlufi, C. K. (2024). Exploring Small and Medium Enterprises' Intention to Adopt AI-Powered Chatbots in Halal Marketing Communications. IQTISHODUNA: Jurnal Ekonomi Islam, 13(1), 35-58. [Google Scholar] [Crossref]

37. Nguyen, D. M., Chiu, Y. T. H., & Le, H. D. (2021). Determinants of continuance intention towards banks’ chatbot services in vietnam: A necessity for sustainable development. Sustainability (Switzerland), 13(14), 1–24. https://doi.org/10.3390/su13147625 [Google Scholar] [Crossref]

38. Peng, M. L., Wickersham, J. A., Altice, F. L., Shrestha, R., Azwa, I., Zhou, X., Halim, M. A. A., Ikhtiaruddin, W. M., Tee, V., Kamarulzaman, A., & Ni, Z. (2022). Formative Evaluation of the Acceptance of HIV Prevention Artificial Intelligence Chatbots by Men Who Have Sex with Men in Malaysia: Focus Group Study. JMIR Formative Research, 6(10), 1–15. https://doi.org/10.2196/42055 [Google Scholar] [Crossref]

39. Raja Abd Aziz, R. A. I., & Ahmad, N. R. (2023). Acceptability of Malaysian working adults towards MOH chatbot services in disseminating COVID-19 information. Journal of Information and Knowledge Management (JIKM), 2, 168-180. [Google Scholar] [Crossref]

40. Rana, M. M., Siddiqee, M. S., Sakib, M. N., & Ahamed, M. R. (2024). Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework. Heliyon, 10(18). [Google Scholar] [Crossref]

41. Saadioui, Z. (2024). Understanding User Intent & Chatbots: A Case Study. https://www.arsturn.com/blog/understanding-user-intent-chatbots-case-study. [Google Scholar] [Crossref]

42. Sarstedt, M., Bengart, P., Shaltoni, A. M. and Lehmann, S. (2017). The use of sampling methods in advertising research: a gap between theory and practice. International Journal of Advertising, 37(4), 1-14. [Google Scholar] [Crossref]

43. Sattikar, A. A., & Kulkarni, R. V. (2012). A role of artificial intelligence techniques in security and privacy issues of social networking. International Journal of Computer Science Engineering & Technology, 2(1), 792-806. [Google Scholar] [Crossref]

44. Senadheera, S., Yigitcanlar, T., Desouza, K. C., Mossberger, K., Corchado, J., Mehmood, R., Li, R. Y. M., & Cheong, P. H. (2024). Understanding Chatbot Adoption in Local Governments: A Review and Framework. Journal of Urban Technology, 1–35. https://doi.org/10.1080/10630732.2023.2297665 [Google Scholar] [Crossref]

45. Sugumar, M., & Chandra, S. (2021). Do I Desire Chatbots to be like Humans? Exploring Factors for Adoption of Chatbots for Financial Services. Journal of International Technology and Information Management, 30(3), 38–77. https://doi.org/10.58729/1941-6679.1501 [Google Scholar] [Crossref]

46. Sundjaja, A. M., Utomo, P., & Colline, F. (2024). The determinant factors of continuance use of customer service chatbot in Indonesia e-commerce: extended expectation confirmation theory. Journal of Science and Technology Policy Management. https://doi.org/10.1108/JSTPM-04-2024-0137 [Google Scholar] [Crossref]

47. Surahman, E., & Wang, T. H. (2022). Academic dishonesty and trustworthy assessment in online learning: A systematic literature review. Journal of Computer Assisted Learning, 38(6), 1535-1553. [Google Scholar] [Crossref]

48. Teoh, K. B., Kee, D. M. H., & Nadeem, A. (2021). How Does Psychosocial Safety Climate Affect Burnout Among Malaysian Educators During the COVID-19 Pandemic? Asia-Pacific Social Science Review, 21(4). [Google Scholar] [Crossref]

49. Toh, T. J., & Tay, L. Y. (2022). Banking Chatbots: A Study on Technology Acceptance among Millennials in Malaysia. Journal of Logistics, Informatics and Service Science, 9(3), 1–15. https://doi.org/10.33168/LISS.2022.0301 [Google Scholar] [Crossref]

50. Uzir, M. U. H., Al Halbusi, H., Lim, R., Jerin, I., Hamid, A. B. A., Ramayah, T., & Haque, A. (2021). Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19. Technology in society, 67, 101780. [Google Scholar] [Crossref]

51. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. Wang, C., Zhang, N., & Wang, C. (2021). Managing privacy in the digital economy. Fundamental Research, 1(5), 543-551. [Google Scholar] [Crossref]

52. Wilkinson, D., Alkan, Ö., Liao, Q. V., Mattetti, M., Vejsbjerg, I., Knijnenburg, B. P., & Daly, E. (2021). Why or why not? The effect of justification styles on chatbot recommendations. ACM Transactions on Information Systems (TOIS), 39(4), 1-21. [Google Scholar] [Crossref]

53. Yau, K. L. A., Saad, N. M., & Chong, Y. W. (2021). Artificial intelligence marketing (Aim) for enhancing customer relationships. Applied Sciences (Switzerland), 11(18). https://doi.org/10.3390/app11188562 [Google Scholar] [Crossref]

54. Zhang, W., & Gutierrez, O. (2007). Information technology acceptance in the social services sector context: An exploration. Social Work, 52(3), 221-231. [Google Scholar] [Crossref]

55. Yacob, N. Haji Ali, and A. D. Roslim, “Innovations and Adoption: Examining the Constructs of Technology Acceptance Theories”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, pp. 338–344, Feb. 2025. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles