The Role of AI in Shaping Political Discourse on Social Media

Authors

Mohammad Nurhafiz Hassim

Faculty of Communication and Media Studies, University Technology MARA, Malaysia (Malaysia)

Nur Nasliza Arina Mohamad Nasir

Faculty of Communication and Media Studies, University Technology MARA, Malaysia (Malaysia)

Article Information

DOI: 10.47772/IJRISS.2025.910000478

Subject Category: Communication

Volume/Issue: 9/10 | Page No: 5817-5827

Publication Timeline

Submitted: 2025-11-02

Accepted: 2025-11-08

Published: 2025-11-17

Abstract

In the contemporary landscape of politics, social media functions as the primary venue of engagement. The algorithms of artificial intelligence (AI) systems curate political discourse, target advertising, moderate discussions, and place generative media within social media feeds at marginal costs approaching zero. However, the engagement-optimized closed systems distort content, create environments for unaccountable microtargeting, spread misinformation, erode trust in the political system, and undermine the legitimacy of elections. This research seeks to explain how AI on social media structures exposure, interpretation, and perceived legitimacy of political discourse, and identifies interventions that retain benefits while reducing harms. The analysis is based on secondary data situated in Google Scholar, Scopus, and Web of Sciences from 2020 to 2025. This study builds on peer-reviewed research articles as the foundation for assessing the AI-political communication functions, strategies and AI technology. Six functions of AI systems were articulated: algorithmic curation and ranking, political ad targeting and delivery optimization, automated moderation and labeling, cross-cutting design choices, context dependence, and generative AI synthetic and synthetic political content. In this context, the benefits of AI in political communication include improved relevance, accessibility, safety, and efficiency of political campaigns, while the harms involve narrowed cross-cutting exposure, high-arousal polarization, opaque segmented persuasion, uneven enforcement, and synthetic media that undermines integrity.

Keywords

Artificial Intelligence, Political Discourse, Social Media; Content Generative AI

Downloads

References

1. Abdul Wahab, S., & Tew Abdullah, M. H. (2025). Media framing on Bernama’s Twitter coverage during Malaysia’s GE15: An exploratory factor analysis. SEARCH Journal Media and Communication Research, 17(1), 41–57. https://doi.org/10.58946/search-17.1.P3 [Google Scholar] [Crossref]

2. Ajaegbu, O. O., & Ajaegbu, C. (2024). The new democratisation: Social media impact on the political process in Sub-Saharan Africa. Frontiers in Communication, 9, 1394949. https://doi.org/10.3389/fcomm.2024.1394949 [Google Scholar] [Crossref]

3. Ali, M., Sapiezynski, P., Korolova, A., Mislove, A., & Rieke, A. (2021). Ad Delivery Algorithms: The Hidden Arbiters of Political Messaging. Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 13–21. https://doi.org/10.1145/3437963.3441801 [Google Scholar] [Crossref]

4. Akmar Hayati, A.G. (2021, Januari 7). Pengguna setia media sosial. Harian Metro. Retrieved from https://www.hmetro.com.my/WM/2021/01/661173/pengguna-setia-media-sosial [Google Scholar] [Crossref]

5. Ayma Quirita, V. A., David Cárdenas, J., Aliaga, W., Ayma Quirita, V. H., Palacios, A., & Sierra, R. B. (2024). Peruvian Presidential Debates in the Elections of 2021 in Twitter/X: A Sentiment Analysis Approach. IEEE Access, 12, 138386–138398. https://doi.org/10.1109/ACCESS.2024.3465503 [Google Scholar] [Crossref]

6. Bartley, N., Burghardt, K., & Lerman, K. (2025). Impacts of Personalization on Social Network Exposure. In L. M. Aiello, T. Chakraborty, & S. Gaito (Eds.), Social Networks Analysis and Mining (Vol. 15212, pp. 38–53). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-78538-2_3 [Google Scholar] [Crossref]

7. Bazarkina, D., & Matyashova, D. (2022). “Smart” Psychological Operations in Social Media: Security Challenges in China and Germany. 14–20. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147530339&partnerID=40&md5=5f9ca306159032f911d67b4bab9e5a6c [Google Scholar] [Crossref]

8. Berdón-Prieto, P., Herrero-Izquierdo, J., & Reguero-Sanz, I. (2023). Political polarization and politainment: Methodology for analyzing crypto hate speech on TikTok. El Profesional de La Información, e320601. https://doi.org/10.3145/epi.2023.nov.01 [Google Scholar] [Crossref]

9. Bukhari, M., & Anwar, S. (2025). The Influence of AI on Models of Governance in Authoritarian and Democratic Systems. Journal of Political Stability Archive, 3(1), 887–902. https://doi.org/10.63468/jpsa.3.1.53 [Google Scholar] [Crossref]

10. Cherikbaeva, N., Musaeva, T., & Kyrgyz-Turkish Manas University. (2024). Political Discourse And Its Role In Shaping Public Opinion. Alatoo Academic Studies, 24(1), 277–290. https://doi.org/10.17015/aas.2024.241.25 [Google Scholar] [Crossref]

11. Cupać, J., & Sienknecht, M. (2024). Regulate against the machine: How the EU mitigates AI harm to democracy. Democratization, 31(5), 1067–1090. https://doi.org/10.1080/13510347.2024.2353706 [Google Scholar] [Crossref]

12. Das, A., & Malaviya, S. (2025). Artificial Intelligence and Sentiment Analysis in Political Campaigns. In Cyber‐Physical Systems for Innovating and Transforming Society 5.0 (1st ed., pp. 193–209). Wiley. https://doi.org/10.1002/9781394197750.ch9 [Google Scholar] [Crossref]

13. Dávila Cortés, I. E. (2025). Los derechos político-electorales en México ante los desafíos de la Inteligencia Artificial. Revista de Derecho Político, 123, 345–372. https://doi.org/10.5944/rdp.123.2025.45516 [Google Scholar] [Crossref]

14. Deng, L. (2018). Artificial Intelligence in the Rising Wave of Deep Learning: The Historical Path and Future Outlook [Perspectives]. IEEE Signal Processing Magazine, 35(1), 180–177. https://doi.org/10.1109/MSP.2017.2762725 [Google Scholar] [Crossref]

15. Diez-Gracia, A., Sánchez-García, P., & Martín-Román, J. (2023). Polarización y discurso emocional de la agenda política en redes sociales: Desintermediación y engagement en campaña electoral. Revista ICONO 14. Revista Científica de Comunicación y Tecnologías Emergentes, 21(1). https://doi.org/10.7195/ri14.v21i1.1922 [Google Scholar] [Crossref]

16. García-Huete, E., Ignacio-Cerrato, S., Pacios, D., Vázquez-Poletti, J. L., Pérez-Serrano, M. J., Donofrio, A., Cesarano, C., Schetakis, N., & Di Iorio, A. (2025). Evaluating the role of generative AI and color patterns in the dissemination of war imagery and disinformation on social media. Frontiers in Artificial Intelligence, 7, 1457247. https://doi.org/10.3389/frai.2024.1457247 [Google Scholar] [Crossref]

17. Ghose, A., Pallav, P., & Ali, S. M. A. (2025). AI and Political Polarization: Analyzing the Impact of Algorithmic Bias on Governance in Diverse Political Systems. In A. Günar (Ed.), Advances in Finance, Accounting, and Economics (pp. 135–160). IGI Global. https://doi.org/10.4018/979-8-3693-7036-0.ch007 [Google Scholar] [Crossref]

18. Gorwa, R., Binns, R., & Katzenbach, C. (2020). Algorithmic content moderation: Technical and political challenges in the automation of platform governance. Big Data & Society, 7(1), 205395171989794. https://doi.org/10.1177/2053951719897945 [Google Scholar] [Crossref]

19. Hartono, B., Suasana, I. S., Muthohir, M., Suresh, R., & Prihatmoko, S. (2025). Sociotechnical Perspectives on Balancing Human Judgment and AI in Content Moderation. 2025 4th International Conference on Creative Communication and Innovative Technology (ICCIT), 1–7. https://doi.org/10.1109/ICCIT65724.2025.11167561 [Google Scholar] [Crossref]

20. Imran, H., Maqsood, M., & Imran, Q. (2025). The deepfake crisis: Exploring new media literacy, information integrity, and trust among Pakistani youth. Qualitative Research Reports in Communication, 1–12. https://doi.org/10.1080/17459435.2025.2541214 [Google Scholar] [Crossref]

21. Jain, V., & Mitra, A. (2025). The Role of Social Media and AI in Shaping Neo-Propaganda for Populist Movements: A Global Perspective. In A. T. Vieira, A. F. Joaquim, & A. Duarte (Eds.), Advances in Wireless Technologies and Telecommunication (pp. 63–86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9999-6.ch004 [Google Scholar] [Crossref]

22. Jufri, Rahman, A., & Suarga, H. (2024). Exploring the impact of social media on political discourse: A case study of the Makassar mayoral election. International Journal of Advanced Technology and Engineering Exploration, 11(114). https://doi.org/10.19101/IJATEE.2023.10102458 [Google Scholar] [Crossref]

23. Kashiramka, S., Gupta, P., & Barman, S. (2024). Literature Review of Artificial Intelligence’s Impact on Politics and Society. 2024 IEEE 11th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1–6. https://doi.org/10.1109/UPCON62832.2024.10983037 [Google Scholar] [Crossref]

24. Kavoliūnaitė-Ragauskienė, E. (2024). Artificial Intelligence in Manipulation: The Significance and Strategies for Prevention. Baltic Journal of Law & Politics, 17(2), 116–141. https://doi.org/10.2478/bjlp-2024-00018 [Google Scholar] [Crossref]

25. Kumar, S., Musharaf, D., & Bhushan, B. (2024). Taming The Hate: Machine Learning Analysis Of Hate Speech. 2024 2nd International Conference on Disruptive Technologies (ICDT), 269–273. https://doi.org/10.1109/ICDT61202.2024.10489362 [Google Scholar] [Crossref]

26. Kumar, V., Kapoor, A., Chaudhary, R. R., Gupta, L., & Khokhar, D. (2024). Preserving Integrity: A Binary Classification Approach to Unmasking Artificially Generated Voices in the Age of Deepkakes. 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), 1449–1454. https://doi.org/10.23919/INDIACom61295.2024.10499177 [Google Scholar] [Crossref]

27. Latif, E. A. (2017). The Routledge Handbook of Arabic Linguistics (1st ed.). Routledge. https://doi.org/10.4324/9781315147062 [Google Scholar] [Crossref]

28. Liu, B. (2021). In AI We Trust? Effects of Agency Locus and Transparency on Uncertainty Reduction in Human–AI Interaction. Journal of Computer-Mediated Communication, 26(6), 384–402. https://doi.org/10.1093/jcmc/zmab013 [Google Scholar] [Crossref]

29. Liv, N., & Greenbaum, D. (2020). Deep Fakes and Memory Malleability: False Memories in the Service of Fake News. AJOB Neuroscience, 11(2), 96–104. https://doi.org/10.1080/21507740.2020.1740351 [Google Scholar] [Crossref]

30. Long, Z., Chen, J., & Bao, T. (2020). Research on International Relations in the Age of Artificial Intelligence. 2020 International Conference on Computer Engineering and Application (ICCEA), 436–438. https://doi.org/10.1109/ICCEA50009.2020.00100 [Google Scholar] [Crossref]

31. López Ponce, M., Barredo Ibañez, D., & Sánchez Gonzáles, H. (2024). Usos y riesgos de la Inteligencia Artificial en las campañas electorales 2023: Encuesta Delphi a expertos estratégicos de Colombia. Revista ICONO 14. Revista Científica de Comunicación y Tecnologías Emergentes, 22(1), e2078. https://doi.org/10.7195/ri14.v22i2.2078 [Google Scholar] [Crossref]

32. Lv, Z. (2023). Generative artificial intelligence in the metaverse era. Cognitive Robotics, 3, 208–217. https://doi.org/10.1016/j.cogr.2023.06.001 [Google Scholar] [Crossref]

33. Matalon, Y., Magdaci, O., Almozlino, A., & Yamin, D. (2021). Using sentiment analysis to predict opinion inversion in Tweets of political communication. Scientific Reports, 11(1), 7250. https://doi.org/10.1038/s41598-021-86510-w [Google Scholar] [Crossref]

34. Mohd Faizal, K. (2024). Social media as an online public sphere: A study among the first-time Malay voters. Kajian Malaysia, 42(2), 29‒50. [Google Scholar] [Crossref]

35. Morandín-Ahuerma, F. (2022). What is Artificial Intelligence? International Journal of Research Publication and Reviews, 03(12), 1947–1951. https://doi.org/10.55248/gengpi.2022.31261 [Google Scholar] [Crossref]

36. Nur Nasliza Arina, M.N., & Mohammad Nurhafiz, H. (2023). Mass Media: Suitability and Efficacy in Shaping Youth's Personality Towards Becoming Quality Human Capital. e-Journal of Media & Society, 6(2), 15-25. [Google Scholar] [Crossref]

37. Parmar, S., Patel, P., & Farooqui, Y. (2024). Homophily and Sentiment Analysis for Political Issues Related Discussions in Twitter. 2024 4th International Conference on Sustainable Expert Systems (ICSES), 604–608. https://doi.org/10.1109/ICSES63445.2024.10762976 [Google Scholar] [Crossref]

38. Pauline Leong. (2015). Political Communication in Malaysia: A Study on the Use of New Media in Politics. E-journal of Democracy JeDEM 7(1), 46-71. [Google Scholar] [Crossref]

39. Pinto-Bustamante, B. J., Riaño-Moreno, J. C., Clavijo-Montoya, H. A., Cárdenas-Galindo, M. A., & Campos-Figueredo, W. D. (2023). Bioethics and artificial intelligence: Between deliberation on values and rational choice theory. Frontiers in Robotics and AI, 10, 1140901. https://doi.org/10.3389/frobt.2023.1140901 [Google Scholar] [Crossref]

40. Rubio Núñez, R. (2025). El uso de la inteligencia artificial en las campañas electorales y sus efectos democráticos. Revista de Derecho Político, 122, 65–102. https://doi.org/10.5944/rdp.122.2025.44742 [Google Scholar] [Crossref]

41. Shkvorchenko, N. (2020). Linguistic and gender peculiarities of english political discourse. Analele Universitatii Din Craiova - Seria Stiinte Filologice, Lingvistica, 42(1–2), 398–416. Scopus. [Google Scholar] [Crossref]

42. Sinha, S., Datta, S., Kumar, R., Bhattacharya, S., Sarkar, A., & Das, K. (2024). Exploring Creativity: The Development and Uses of Generative AI. In R. Kumar, S. Sahu, & S. Bhattacharya (Eds.), Advances in Computational Intelligence and Robotics (pp. 167–198). IGI Global. https://doi.org/10.4018/979-8-3693-3278-8.ch008 [Google Scholar] [Crossref]

43. Sravani, D., Kameswari, L., & Mamidi, R. (2021). Political Discourse Analysis: A Case Study of Code Mixing and Code Switching in Political Speeches. Workshop on Computational Approaches to Linguistic Code-Switching, Stroudsburg, PA. [Google Scholar] [Crossref]

44. Stieglitz, S., & Dang-Xuan, L. (2013). Social media and political communication: A social media analytics framework. Social Network Analysis and Mining, 3(4), 1277–1291. https://doi.org/10.1007/s13278-012-0079-3 [Google Scholar] [Crossref]

45. Suter, V., Ma, C., Pöhlmann, G., & Meckel, M. (2025). When Politicians Talk AI: Issue‐Frames in Parliamentary Debates Before and After ChatGPT. Policy & Internet, 17(3), e70010. https://doi.org/10.1002/poi3.70010 [Google Scholar] [Crossref]

46. Tembhurne, J. V., Lakhotia, K., & Agrawal, A. (2025). Twitter sentiment analysis using ensemble of multi-channel model based on machine learning and deep learning techniques. Knowledge and Information Systems, 67(2), 1045–1071. https://doi.org/10.1007/s10115-024-02256-7 [Google Scholar] [Crossref]

47. Van Noordt, C., & Misuraca, G. (2022). Artificial intelligence for the public sector: Results of landscaping the use of AI in government across the European Union. Government Information Quarterly, 39(3), 101714. https://doi.org/10.1016/j.giq.2022.101714 [Google Scholar] [Crossref]

48. Vasist, P. N., Krishnan, S., IIM Kozhikode, India & LUT School of Engineering Sciences, Teo, T., National University of Singapore, Azad, N., & LUT School of Engineering Sciences. (2025). Exploring Concerns of Fake News on ChatGPT: A Network Analysis of Social Media Conversations. Communications of the Association for Information Systems, 56, 936–960. https://doi.org/10.17705/1CAIS.05636 [Google Scholar] [Crossref]

49. Wang, S., & Kim, K. J. (2023). Content Moderation on Social Media: Does It Matter Who and Why Moderates Hate Speech? Cyberpsychology, Behavior, and Social Networking, 26(7), 527–534. https://doi.org/10.1089/cyber.2022.0158 [Google Scholar] [Crossref]

50. Wu, C., Jiang, S., Sun, J., & Liu, Y. (2025). Research on the influence mechanism of emotional communication on Twitter (X) and the effect of spreading public anger. Acta Psychologica, 260, 105560. https://doi.org/10.1016/j.actpsy.2025.105560 [Google Scholar] [Crossref]

51. Xiang, Y. (2025). Framing the Fallout: AI-Generated Visual Disinformation and the Fukushima Wastewater Narrative on Chinese Social Media. 406–410. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105011600010&partnerID=40&md5=7f71e357ea13eecf12962a79b73b1f57 [Google Scholar] [Crossref]

52. Yadav, Dr. R. R., Gupta, Asst. Prof. A., Pandey, Asst. Prof. P. A., Pandey, Asst. Prof. A., & Wavhal, Asst. Prof. S. (2025). A Study of Applications of Artificial Intelligence. International Journal of Research and Scientific Innovation, XII(IV), 782–786. https://doi.org/10.51244/IJRSI.2025.12040067 [Google Scholar] [Crossref]

53. Yazici, T. (2025). Artificial Intelligence Ethics in Communication: Challenges and Future Perspectives. In A. Kalafat Çat, M. A. Yetgin, & J. I. Sarker (Eds.), Navigating Modern Digital Communication Ethics and Law (pp. 33–74). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-1702-1.ch002 [Google Scholar] [Crossref]

54. Zeng, J. (2020). Artificial intelligence and China’s authoritarian governance. International Affairs, 96(6), 1441–1459. https://doi.org/10.1093/ia/iiaa172 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles