Trust and Privacy Concern in AI-Powered Chatbot: A Conceptual Framework for Customer Purchase Intention in Malaysia Apparel SMEs
Authors
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
Fakulti Pengurusan Teknologi dan Teknousahawanan, Universiti Teknikal Malaysia Melaka (Malaysia)
International Islamic University (Malaysia)
Article Information
DOI: 10.47772/IJRISS.2025.92800022
Subject Category: Marketing
Volume/Issue: 9/28 | Page No: 229-238
Publication Timeline
Submitted: 2025-11-10
Accepted: 2025-11-16
Published: 2025-12-18
Abstract
Artificial intelligence (AI) technologies, particularly chatbots, are transforming customer service by enhancing efficiency, consistency, and personalization; however, their adoption within small and medium-sized enterprises (SMEs) in Malaysia’s apparel sector remains limited despite the sector’s critical contribution to the national economy. This conceptual paper investigates how AI-powered chatbots influence customer purchase intention by addressing three key service dimensions: 24/7 availability, response consistency, and personalized interactions, while positioning trust as a mediating mechanism and privacy concern as a moderating factor that together shape how customers perceive and respond to chatbot-driven services. Using a critical review of extant literature and theoretical foundations drawn from the Technology Acceptance Model, Service Quality Theory, and Expectation Confirmation Theory, the study develops a conceptual framework that advances three propositions linking chatbot attributes to purchase intention. The results of this theoretical synthesis suggest that chatbots can mitigate SMEs’ operational constraints, improve customer satisfaction, and strengthen competitiveness in digital markets. The paper contributes theoretically by extending technology adoption and service quality discussions into the SME context, and practically by offering strategic insights for managers and policymakers seeking cost-effective digital transformation solutions. Finally, directions for future empirical research are outlined, including testing the framework across industries and cultural contexts to validate its applicability.
Keywords
Artificial Intelligence (AI); Chatbot
Downloads
References
1. Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user perceptions. Electronic Markets, 31(2), 447–464. https://doi.org/10.1007/s12525-020-00414-7 [Google Scholar] [Crossref]
2. Bhattacherjee, A. (2021). Expectation–confirmation in information systems research: Progress and future directions. Information & Management, 58(6), 103455. https://doi.org/10.1016/j.im.2021.103455 [Google Scholar] [Crossref]
3. Chen, S., Zhang, J., & Li, H. (2025). Exploring the varying effects of chatbot service quality on customers’ service-switching intentions in online shopping. Frontiers in Psychology, 16, 1454197. https://doi.org/10.3389/fpsyg.2025.1454197 [Google Scholar] [Crossref]
4. Ding, Y., Li, X., & Xu, G. (2024). A psychological approach to AI chatbot adoption in e-commerce: Interactivity, humanness, and trust. BMC Psychology, 12(1), 2083. https://doi.org/10.1186/s40359-024- 02083-z [Google Scholar] [Crossref]
5. Ferraro, C., Pirolo, L., & Sorrentino, M. (2024). The paradoxes of generative-AI-enabled customer service. Business Horizons, 67(5), 523–535. https://doi.org/10.1016/j.bushor.2024.02.006 [Google Scholar] [Crossref]
6. Grewal, D., Roggeveen, A. L., & Nordfält, J. (2020). The future of retailing. Journal of Retailing, 96(1), 1–6. https://doi.org/10.1016/j.jretai.2019.11.002 [Google Scholar] [Crossref]
7. Huang, M. H., & Rust, R. T. (2021). Engaged to a robot? The role of AI in service. Journal of Service Research, 24(1), 30–41. https://doi.org/10.1177/1094670520902266 [Google Scholar] [Crossref]
8. Huang, Y., Behnam, M., & Keyvan, T. (2018). The importance of consistency in service: A meta- analysis. Journal of Consumer Marketing, 35(4), 408–422. https://doi.org/10.1108/JCM-12-2016-2049 [Google Scholar] [Crossref]
9. Kim, S., & Lee, D. H. (2021). Customer satisfaction and trust in AI-powered services: Examining the role of personalization. Journal of Business Research, 123, 211–219. https://doi.org/10.1016/j.jbusres.2020.09.041 [Google Scholar] [Crossref]
10. Loo, S. C., Ramachandran, S. D., & Raja Yusof, R. N. (2023). Digital transformation readiness in Malaysian SMEs: A critical review. Cogent Economics & Finance, 11(1), 2267748. [Google Scholar] [Crossref]
11. https://doi.org/10.1080/23322039.2023.2267748 [Google Scholar] [Crossref]
12. Meng, H., Li, Y., & Zhang, Z. (2025). The impact of chatbot response strategies and emojis on consumer purchase decisions. Frontiers in Psychology, 16,11851727. https://doi.org/10.3389/fpsyg.2025.11851727 [Google Scholar] [Crossref]
13. Ministry of Finance. (2023). Malaysia Madani: Advancing towards a progressive, inclusive society. Putrajaya: Government of Malaysia. [Google Scholar] [Crossref]
14. Miraz, M. H., Chowdhury, M., & Akter, S. (2024). Communication effectiveness and intention to use AI chatbots: Empirical evidence from SMEs. Cogent Business & Management, 11(1), 2411445. https://doi.org/10.1080/23311975.2024.2411445 [Google Scholar] [Crossref]
15. Mogaji, E., Olaleye, S., & Ukpabi, D. (2021). The role of chatbots in enhancing customer experience in e-commerce: A study of shopping cart abandonment. Journal of Retailing and Consumer Services, 61, 102529. https://doi.org/10.1016/j.jretconser.2021.102529 [Google Scholar] [Crossref]
16. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40. [Google Scholar] [Crossref]
17. Sharma, R., Singh, A., & Tiwari, P. (2022). Why do SMEs adopt artificial intelligence-based chatbots? Evidence from emerging markets. International Journal of Information Management, 66, 102505. https://doi.org/10.1016/j.ijinfomgt.2022.102505 [Google Scholar] [Crossref]
18. SME Corp Malaysia. (2023). SME Annual Report 2022/23. Kuala Lumpur: SME Corp. [Google Scholar] [Crossref]
19. Venkatesh, V., & Davis, F. D. (2020). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 66(11), 4905–4921. https://doi.org/10.1287/mnsc.2019.3543 [Google Scholar] [Crossref]
20. Wang, Y.-L., Chen, L., & Park, J. (2025). The effects of response time on older and young adults’ chatbot evaluations. Computers in Human Behavior, 154, 107291. https://doi.org/10.1016/j.chb.2024.107291 [Google Scholar] [Crossref]
21. Whang, J.-B., Song, J. H., Lee, J.-H., & Choi, B. (2022). Interacting with chatbots: Message type and consumers’ control. Journal of Business Research, 153, 309–318. https://doi.org/10.1016/j.jbusres.2022.08.012 [Google Scholar] [Crossref]
22. Xu, F., Liu, Y., & Gursoy, D. (2020). The impacts of service robots and AI on service delivery in hospitality and tourism. Tourism Management, 83, 104161. [Google Scholar] [Crossref]
23. https://doi.org/10.1016/j.tourman.2020.104161 [Google Scholar] [Crossref]
24. Zhang, X., Li, J., & Wang, Q. (2024). Is AI chatbot recommendation convincing customers? An empirical examination of personalized recommendations and purchase intention. Acta Psychologica, 240, 104045. https://doi.org/10.1016/j.actpsy.2024.104045 [Google Scholar] [Crossref]
25. Zhang, Z., Wang, H., & Li, T. (2024). How justifying chatbot response delays impacts user trust: The role of transparency cues. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW), 1–27. https://doi.org/10.1145/3640794.3665550 [Google Scholar] [Crossref]