Physiological and Biochemical Attributes of Chromium Detoxification Are Regulated by Root synthesized Organic Acids in Rice Varieties
Authors
Dept. Of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003 (Bangladesh)
Dept. Of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003 (Bangladesh)
Dept. Of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003 (Bangladesh)
Dept. Of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003 (Bangladesh)
Article Information
DOI: 10.51244/IJRSI.2025.1210000076
Subject Category: Climatic Change
Volume/Issue: 12/10 | Page No: 856-874
Publication Timeline
Submitted: 2025-10-02
Accepted: 2025-10-08
Published: 2025-11-04
Abstract
To know effective physiological response against chromium toxicity, 25 rice varieties were cultivated on the hydroponic solution treated with 100µM chromium and physiological as well as biochemical features were evaluated compared with non-treated control plants. In this investigation, it was found that the concentration of citric acid synthesized and secreted by roots influences the mitigation of chromium toxicity. In varieties BR-58, BR-63 and BR-68 chromium uptake were significantly higher than the control plant but their translocation to shoot was restricted indicating elevated Cr retention in roots. This retention was facilitated by root secreted citric acid which was assured by significant rhizospheric pH reduction (15%, 18.5% and 20.9% respectively) under chromium stress. Furthermore, BR-73 showed an efficient exclusion mechanism keeping down metal uptake by citric acid ensured by 15% rhizosphere pH reduction. In contrast, varieties of rhizospheres with a pH reduction of less than 10% were unable to withstand chromium toxicity. The findings indicate that a reduction of 15% or more in rhizospheric pH serves as the benchmark for the necessary level of organic acid secretion required for chromium tolerance. Moreover, the strategies employed for tolerance differ based on genotypes rather than species. Furthermore, it offers an efficient screening technique for metal tolerant rice plants.
Keywords
rhizospheric pH, chromium tolerant, organic acids, adsorption, Oryza sativa
Downloads
References
1. Ágnes Szepesi,Réka Szőllősi (2018).Mechanism Of Proline Biosynthesis And Role Of Proline Metabolism Enzymes Under Environmental Stress In Plants, In:Parvaiz Ahmad, Mohammad Abassahanger, Mohammed Nasser Alyemeni (Eds), Plant Metabolites And Regulation Under Environmental Stress. Academic Press.Pp 337-353. Https://Doi.Org/10.1016/B978-0-12-812689-9.00017-0 [Google Scholar] [Crossref]
2. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del Río LA, Palma JM, Corpas FJ. (2012). Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell & Environment 35: 281–29 [Google Scholar] [Crossref]
3. Al Mahmud, J., Hasanuzzaman, M., Nahar, K., Bhuyan, M. B., & Fujita, M. (2018). Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and environmental safety, 147, 990-1001.https://doi.org/10.1016/j.ecoenv.2017.09.045. [Google Scholar] [Crossref]
4. Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12), 1337-1344.https://doi.org/10.1046/j.1365-3040.2001.00778.x. [Google Scholar] [Crossref]
5. Al-Khayri, J. M., Rashmi, R., Toppo, V., Chole, P. B., Banadka, A., Sudheer, W. N., ... & Rezk, A. A. S. (2023). Plant secondary metabolites: The weapons for biotic stress management. Metabolites, 13(6), 716. https://doi.org/10.3390/metabo13060716. [Google Scholar] [Crossref]
6. Anderson, J. S., Lall, S. P., Anderson, D. M., &Chandrasoma, J. (1992). Apparent and true availability of amino acids from common feed ingredients for Atlantic salmon (Salmo salar) reared in sea water. Aquaculture, 108(1-2), 111-124.https://doi.org/10.1016/0044-8486(92)90322-C. [Google Scholar] [Crossref]
7. Bari, M. A., Prity, S. A., Das, U., Akther, M. S., Sajib, S. A., Reza, M. A., & Kabir, A. H. (2020). Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice. Plant Biology, 22(3), 472-479.https://doi.org/10.1111/plb.13090. [Google Scholar] [Crossref]
8. Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.https://doi.org/10.1007/BF00018060. [Google Scholar] [Crossref]
9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3. [Google Scholar] [Crossref]
10. Dey, S. R., Sharma, M., & Kumar, P. (2023). Effects and responses of chromium on plants. In Chromium in Plants and Environment (pp. 385-427). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44029-8_14. [Google Scholar] [Crossref]
11. Dong D, Peng X, Yan X. (2004). Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiologia Plantarum 122: 190–199 [Google Scholar] [Crossref]
12. Fargašová, A. (2001). Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biologia plantarum, 44, 471-473. https://doi.org/10.1023/A:1012456507827. [Google Scholar] [Crossref]
13. Fernando DR, Mizuno T, Woodrow IE, Baker AJ, Collins RN (2010). Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytologist 188:1014–1027. [Google Scholar] [Crossref]
14. Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International journal of environmental science and technology, 16, 1807-1828. https://doi.org/10.1007/s13762-019-02215-8. [Google Scholar] [Crossref]
15. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930.http://dx.doi.org/10.1016/j.plaphy.2010.08.016. [Google Scholar] [Crossref]
16. Goud, P. B., &Kachole, M. S. (2012). Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity. Plant signaling & behavior, 7(10), 1258-1262.https://doi.org/10.4161/psb.21584. [Google Scholar] [Crossref]
17. Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical biochemistry, 106(1), 207-212. https://doi.org/10.1016/0003-2697(80)90139-6. [Google Scholar] [Crossref]
18. Guan, J., Zhang, Y., Li, D., Shan, Q., Hu, Z., Chai, T., ... & Qiao, K. (2024). Synergistic role of phenylpropanoid biosynthesis and citrate cycle pathways in heavy metal detoxification through secretion of organic acids. Journal of Hazardous Materials, 476, 135106. https://doi.org/10.1016/j.jhazmat.2024.135106 [Google Scholar] [Crossref]
19. Harada, E., Kim, J. A., Meyer, A. J., Hell, R., Clemens, S., & Choi, Y. E. (2010). Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant and cell physiology, 51(10), 1627-1637.https://doi.org/10.1093/pcp/pcq118 [Google Scholar] [Crossref]
20. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198.https://doi.org/10.1016/0003-9861(68)90654-1. [Google Scholar] [Crossref]
21. Herz K, Dietz S, Gorzolka K, Haider S, Jandt U, Scheel D, Bruelheide H. (2018). Linking root exudates to functional plant traits. PLoS One 13: e0204128. [Google Scholar] [Crossref]
22. Huda, A. N., Haque, M. A., Zaman, R., Swaraz, A. M., & Kabir, A. H. (2017). Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.). International journal of phytoremediation, 19(3), 246-253.https://doi.org/10.1080/15226514.2016.1211986. [Google Scholar] [Crossref]
23. Huda, A. N., Swaraz, A. M., Reza, M. A., Haque, M. A., & Kabir, A. H. (2016). Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). Water, Air, & Soil Pollution, 227, 1-11.https://doi.org/10.1007/s11270-016-2985-x. [Google Scholar] [Crossref]
24. Igamberdiev AU, Eprintsev AT. (2016). Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Frontiers in Plant Science 7: 1042. [Google Scholar] [Crossref]
25. Jewell, M. C., Campbell, B. C., & Godwin, I. D. (2010). Transgenic plants for abiotic stress resistance. Transgenic crop plants, 67-132.https://doi.org/10.1007/978-3-642-04812-8_2. [Google Scholar] [Crossref]
26. Kabir, A. H. (2016). Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biology, 18(4), 710-719. https://doi.org/10.1111/plb.12436 [Google Scholar] [Crossref]
27. Kanto, U., Jutamanee, K., Osotsapar, Y., Chai-arree, W., &Jattupornpong, S. (2015). Promotive effect of priming with 5-aminolevulinic acid on seed germination capacity, seedling growth and antioxidant enzyme activity in rice subjected to accelerated ageing treatment. Plant Production Science, 18(4), 443-454. https://doi.org/10.1626/pps.18.443. [Google Scholar] [Crossref]
28. Khatun, M. R., Mukta, R. H., Islam, M. A., & Huda, A. N. (2019). Insight into citric acid-induced chromium detoxification in rice (Oryza sativa. L). International Journal of Phytoremediation, 21(12), 1234-1240. https://doi.org/10.1080/15226514.2019.161962. [Google Scholar] [Crossref]
29. Kochian, L. V., Hoekenga, O. A., & Pineros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol., 55(1), 459-493.https://doi.org/10.1146/annurev.arplant.55.031903.141655. [Google Scholar] [Crossref]
30. Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., ... & Ding, Z. (2018). PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Reports, 22(5), 1350-1363.doi: https://10.1016/j.celrep.2017.12.105. [Google Scholar] [Crossref]
31. Koyama H., Ojima K., Yamaya T (1990). Utilization of anhydrous aluminum phosphate as a sole source of phosphorus by selected carrot cell line. Plant physiol. 31:173-177. [Google Scholar] [Crossref]
32. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. https://doi.org/10.1042/bst0110591. [Google Scholar] [Crossref]
33. Liujie Wu., Yuriko Kobayashi, Jun Wasaki, and Hiroyuki Koyama (2018). Organic acid excretion from root: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil science and plant nutrition. 64(6): 697-704. [Google Scholar] [Crossref]
34. López-Bucio J, De la Vega OM, Guevara-García A, Herrera-Estrella L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology 18: 450–453. [Google Scholar] [Crossref]
35. Lutts, S., Kinet, J. M., &Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.https://doi.org/10.1006/anbo.1996.0134. [Google Scholar] [Crossref]
36. Mahmud JA, HasanuzzamanM, Nahar K, BorhannuddinBhuyanMH, FujitaMasayuki(2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and Environmental Safety 147:990–1001. https://doi.org/10.1016/j.ecoenv.2017.09.045 [Google Scholar] [Crossref]
37. Martinoia, E.; Rentsch, D. Malate (1994) Compartmentation—Responses to a Complex Metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol, 45: 447–467. [Google Scholar] [Crossref]
38. Meyer, S.; Scholz-Starke, J.; De Angeli, A.; Kovermann, P.; Burla, B.; Gambale, F.; Martinoia, E. Malate (2011). Transport by the Vacuolar AtALMT6 Channel in Guard Cells Is Subject to Multiple Regulation. Plant J. 67: 247–257. [Google Scholar] [Crossref]
39. Montiel-Rozas, M. D. M., Madejón, E., &Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273-281.https://doi.org/10.1016/j.envpol.2016.05.080. [Google Scholar] [Crossref]
40. Mourato M, Reis R, Martins LL(2012) “Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity,” in Advances in Selected Plant Physiology Aspects, G. Montanaro and B. Dichio, Eds., pp. 23–44, InTech, Vienna, Austria, http://hdl.handle.net/10400.5/4410. [Google Scholar] [Crossref]
41. Mourato, M., Reis, R., & Martins, L. L. (2012). Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. Advances in selected plant physiology aspects, 12, 1-17. [Google Scholar] [Crossref]
42. Moussa, Z., Judeh, Z. M., & Ahmed, S. A. (2019). Nonenzymatic exogenous and endogenous antioxidants. Free radical medicine and biology, 1, 11-22. https://doi.org/10.5772/intechopen.87778. [Google Scholar] [Crossref]
43. Mukta, R. H., Khatun, M. R., & Nazmul Huda, A. K. M. (2019). Calcium induces phytochelatin accumulation to cope with chromium toxicity in rice (Oryza sativa L.). Journal of Plant Interactions, 14(1), 295-302.https://doi.org/10.1080/17429145.2019.1629034. [Google Scholar] [Crossref]
44. Mukti, Gill. (2014). Heavy metal stress in plants: a review. Int J Adv Res, 2(6), 1043-1055. [Google Scholar] [Crossref]
45. Nath, K., Singh, D., Shyam, S., & Sharma, Y. K. (2008). Effect of chromium and tannery effluent toxicity on metabolism and growth in cowpea (Vigna sinensis L. SaviexHassk) seedling. Research in Environment and Life Sciences, 1(3), 91-94. [Google Scholar] [Crossref]
46. Nematshahi, N., Lahouti, M., &Ganjeali, A. (2012). Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). European Journal of Experimental Biology, 2(4), 969-974. [Google Scholar] [Crossref]
47. Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian journal of plant physiology, 17, 95-102.https://doi.org/10.1590/S1677-04202005000100008. [Google Scholar] [Crossref]
48. Poonam Panchal, Anthony J. Miller, and Jitender Gir (2021).Organic acids: versatile stress-response roles in plants.Journal of Experimental Botany. 72(11): 4038–4052. [Google Scholar] [Crossref]
49. Ramesh SA, Tyerman SD, Xu B, et al. (2015). GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications 6: 7879. [Google Scholar] [Crossref]
50. Rastgoo, L., Alemzadeh, A., &Afsharifar, A. (2011). Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J, 4(7), 377-383. [Google Scholar] [Crossref]
51. Rauser, W. E. (1999). Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell biochemistry and biophysics, 31, 19-48. https://doi.org/10.1007/BF02738153. [Google Scholar] [Crossref]
52. Reyes F, Pallas B, Pradal C, Vaggi F, Zanotelli D, Tagliavini M, Gianelle D, Costes E. (2020). MuSCA: a multi-scale source-sink carbon allocation model to explore carbon allocation in plants. An application to static apple tree structures. Annals of Botany 126: 571–585. [Google Scholar] [Crossref]
53. Riaz, A., Qin, Y., Zheng, Q., Chen, X., Jiang, W., Riaz, B., ... & Zeng, F. (2024). Cr (VI) behaves differently than Cr (III) in the uptake, translocation and detoxification in rice roots. Science of The Total Environment, 948, 174736.https://doi.org/10.1016/j.scitotenv.2024.174736. [Google Scholar] [Crossref]
54. Rolf D.V. inebrooke, Kathryn L, Cottingham, Jon Norberg, Marten Scheffer, Stanley I. Dodson,Stephen C,Maberly, Ulrich Sommer (2004 Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co‐tolerance. Oikos, 104(3), 451-457. https://doi:10.1111/j.0030-1299.2004.13255.x [Google Scholar] [Crossref]
55. Shanker, A. K., Cervantes, C., Loza-Tavera, H., &Avudainayagam, S. (2005). Chromium toxicity in plants. Environment international, 31(5), 739-753.https://doi.org/10.1016/j.envint.2005.02.003. [Google Scholar] [Crossref]
56. Shanker, A. K., Cervantes, C., Loza-Tavera, H., &Avudainayagam, S. (2005). Chromium toxicity in plants. Environment international, 31(5), 739-753.https://doi.org/10.1016/j.envint.2005.02.003. [Google Scholar] [Crossref]
57. Sharma, P., Jha, A. B., Dubey, R. S., &Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, 2012(1), 217037.https://doi.org/10.1155/2012/217037. [Google Scholar] [Crossref]
58. Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of experimental botany, 57(4), 711-726.https://doi.org/10.1093/jxb/erj073. [Google Scholar] [Crossref]
59. Solanki, R., & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, 66(2), 195-204.https://doi.org/10.2478/s11756-011-0005-6. [Google Scholar] [Crossref]
60. Szepesi, Á., & Szőllősi, R. (2018). Mechanism of proline biosynthesis and role of proline metabolism enzymes under environmental stress in plants. In Plant metabolites and regulation under environmental stress (pp. 337-353). Academic Press.https://doi.org/10.1016/B978-0-12-812689-9.00017-0. [Google Scholar] [Crossref]
61. Thomas BK., David RP., Richard WZ. (2005). Organic acid secretion as a mechanism of aluminum resistance: a model incorporating the cortex, epidermis, the external unstirred layer. J. Exp. Bot. 56: 1853-1865. [Google Scholar] [Crossref]
62. Ullah, S., Liu, Q., Wang, S., Jan, A. U., Sharif, H. M. A., Ditta, A., ... & Cheng, H. (2023). Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. Science of the Total Environment, 165726. https://doi.org/10.1016/j.scitotenv.2023.165726. [Google Scholar] [Crossref]
63. Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55, 1-12. https://doi.org/10.1186/1999-3110-55-35 [Google Scholar] [Crossref]
64. Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and soil, 281, 325-337.https://doi.org/10.1007/s11104-005-4642-9. [Google Scholar] [Crossref]
65. Weidinger, A., & Kozlov, A. V. (2015). Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules, 5(2), 472-484.https://doi.org/10.3390/biom5020472 [Google Scholar] [Crossref]
66. Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., & Shimamoto, K. (2004). Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant physiology, 135(3), 1447-1456.https://doi.org/10.1104/pp.103.036384. [Google Scholar] [Crossref]
67. Yokosho K, Yamaji N, Ma JF. 2011. An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal 68:1061–1069. [Google Scholar] [Crossref]
68. Yu, G., Ma, J., Jiang, P., Li, J., Gao, J., Qiao, S., & Zhao, Z. (2019, August). The mechanism of plant resistance to heavy metal. In IOP conference series: earth and environmental science (Vol. 310, No. 5, p. 052004). IOP Publishing.https://doi:10.1088/1755-1315/310/5/052004. [Google Scholar] [Crossref]
69. Zeng, F., Chen, S., Miao, Y., Wu, F., & Zhang, G. (2008). Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environmental Pollution, 155(2), 284-289. https://doi.org/10.1016/j.envpol.2007.11.019 [Google Scholar] [Crossref]
70. Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP, Fang XM, Wan SZ, Hu XF, Ye JR. (2018). Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS One 13: 1–14. [Google Scholar] [Crossref]
71. Zhou Y, Yang Z, Xu Y, Sun H, Sun Z, Lin B, Sun W, You J. (2018). Soybean NADP-malic enzyme functions in malate and citrate metabolism and contributes to their efflux under Al stress. Frontiers in Plant Science 8: 1–11 [Google Scholar] [Crossref]
72. Ziad Moussa, Zaher MA, Judeh, Saleh A. Ahmed(2019) Nonenzymatic Exogenous and Endogenous Antioxidants, In Rizwan Ahmad (Edited), Free Radical Medicine andBiology. Intech Open.pp-1-22. DOI: 10.5772/intechopen.87778 [Google Scholar] [Crossref]