Morphological Variations of Oak Leaf Fern Living in Epiphytic, Epilithic and Terrestrial Habitats in Dili, Timor Leste
Authors
Timor Leste Adventist International School (East Timor)
Timor Leste Adventist International School (East Timor)
Timor Leste Adventist International School (East Timor)
Timor Leste Adventist International School (East Timor)
Mindanao Mission Academy (East Timor)
Central Mindanao University (East Timor)
Article Information
DOI: 10.51244/IJRSI.2025.1210000077
Subject Category: Biodiversity
Volume/Issue: 12/10 | Page No: 875-886
Publication Timeline
Submitted: 2025-10-02
Accepted: 2025-10-08
Published: 2025-11-04
Abstract
This study examined the morphological variations of Aglaomorpha quercifolia across three habitats: epiphytic, epilithic, and terrestrial in Dili, Timor-Leste. The study aimed to 1.) identify and describe the morphological characteristics of A. quercifolia in different habitats; 2.) assess the statistical variations of these morphological characteristics among different habitat conditions; and 3.) evaluate the extent of morphological variations of A. quercifolia across different habitats based on statistical analysis. Specimens were collected through transect walks and visual searches. Both qualitative (e.g., frond color and texture) and quantitative (e.g., frond and rachis size) data were recorded and analyzed using MANOVA in Jamovi. Results showed that all specimens shared key characteristics such as creeping rhizomes, dimorphic fronds, and scaly stipes, confirming they belong to the same species. However, significant differences in size and shape were observed across habitats. Epiphytic A. quercifolia had the greatest dimension of fertile and sterile fronds. Epilithic ferns were smallest in all measured traits. Statistical analysis confirmed a strong effect of habitat on morphology (F = 57.1, p < 0.001), with fertile frond and rachis length showing the most variation. The findings suggest that while A. quercifolia maintains core species traits, its morphology is significantly influenced by habitat. Epiphytic forms appeared best adapted, with larger fronds aiding nutrient collection. Further research is recommended to include anatomical and physiological studies and environmental monitoring to better understand the species’ adaptability.
Keywords
Aglaomorpha quercifolia, Fern, Habitat, Morphological variation
Downloads
References
1. Anuja, G. I., Latha, P. G., Shine, V. J., Suja, S. R., Shikha, P., Satheesh Kumar, K., & Rajasekharan, S. (2014). Antioedematous and analgesic properties of fertile fronds of Drynaria quercifolia. International Scholarly Research Notices, 2014, 8. https://doi.org/10.1155/2014/302089 [Google Scholar] [Crossref]
2. Chapin III, F. S., Matson, P. A., & Mooney, H. A. (2002). Terrestrial plant nutrient use. In Principles of terrestrial ecosystem ecology (pp. 315-338). Springer. https://doi.org/10.1007/0-387-21663-4_8 [Google Scholar] [Crossref]
3. Christenhusz, M. J., & Chase, M. W. (2014). Trends and concepts in fern classification. Annals of Botany, 0, 1-24. [Google Scholar] [Crossref]
4. Costa, H., Simão, I., Silva, H., Silveira, P., Silva, A., & Pinto, D. C. (2021). Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds, a wild fern used in Timorese cuisine. Foods, 10(1), 87. https://doi.org/10.3390/foods10010087 [Google Scholar] [Crossref]
5. Das, B., Dey, A., Talukdar, A. D., Nongalleima, K., Choudbury, M. D., & Deb, L. (2014). Antifertility efficacy of Drynaria quercifolia (L.) J. Smith on female Wister albino rats. Journal of Ethnopharmacology, 153, 424-429. [Google Scholar] [Crossref]
6. Flora & Fauna Web. (2021, August 19). Drynaria quercifolia. National Parks Board. Retrieved July 15, 2022, from https://www.nparks.gov.sg/florafaunaweb/flora/1/5/1548 [Google Scholar] [Crossref]
7. Gilbert, S. F. (2000). Developmental Biology (6th ed.). Sinauer Associates. [Google Scholar] [Crossref]
8. Hidayat, A., Masnira, M., & Retnowati, R. (2015). Morphological characters and habitat of Aglaomorpha quercifolia (L.) Hovenkamp & S. Linds. in South Sulawesi, Indonesia. Nature Environment and Pollution Technology, 14(3), 671–674. Retrieved from https://www.neptjournal.com/upload-images/N0143215.pdf [Google Scholar] [Crossref]
9. Hassler, M. (2022). Synonymic checklist and distribution of ferns and lycophytes of the world. World Ferns, 13.2. www.worldplants.de/ferns/ [Google Scholar] [Crossref]
10. Janarthanan, L., Karthikeyan, V., Balakrishnan, B. R., Jaykar, B., Senthilkumar, K. L., & Anandharaj, G. (2016). Pharmacognostical standardization and phytochemical profile of rhizomes of Drynaria quercifolia (Linn) J. Smith. European Journal of Biomedical and Pharmaceutical Sciences, 3(8), 278-287. [Google Scholar] [Crossref]
11. Janssen, T., & Schneider, H. (2005). Exploring the evolution of humus collecting leaves in drynarioid ferns (Polypodiaceae, Polypodiidae) based on phylogenetic evidence. Plant Systematics and Evolution, 252, 175-197. https://doi: 10.1007/s00606-004-0264-6 [Google Scholar] [Crossref]
12. Korwar, P. G., Beknal, A. K., Patil, B. S., Halkai, M. A., Kulkarni, U., & Soodam, S. R. (2010). A study on phytochemical investigation of Drynaria quercifolia Linn. rhizome. International Journal of Pharmaceutical Sciences And Research, 1(12), 148-158. http://dx.doi.org/10.13040/IJPSR.0975-8232. [Google Scholar] [Crossref]
13. Kulkarni, G. K., Kadolkar, R. V., & Maisale, A. B. (2010). Anthelminthic activity of Drynaria quercifolia (L.) J. Smith. Journal of Pharmacy Research, 3(5), 975-977. [Google Scholar] [Crossref]
14. Lubos, L. C., & Amoroso, V. B. (2011). The identity and morphology of the three. Asian Journal of Biodiversity. http://dx.doi.org/10.7828/ajob.v2i1.91. [Google Scholar] [Crossref]
15. Marathe, R. R., Jadhav, M. D., Suneeti, G., Sonali J., Vidya, T., & Rathod, L. R. (2011). Utilization of Drynaria quercifolia (L.) J. Smith as a mosquito repellent. Science Research Reporter, 1(3), 159-163. [Google Scholar] [Crossref]
16. Merriam-Webster. (n.d.). Terrestrial. In Merriam-Webster.com dictionary. Retrieved July 10, 2022, from https://www.merriam-webster.com/dictionary/terrestrial [Google Scholar] [Crossref]
17. Mohanta, M. C., Dey, A., Rahman, S. M., & Chowdhury, R. N. (2013). Evaluation of anti-oxidant, cyto-toxic and anti-microbial properties of Drynaria quercifolia. International Research Journal of Pharmacy, 4(7), 46-48. https://doi.org/10.7897/2230-8407.04710 [Google Scholar] [Crossref]
18. Modak, D., Paul, S., Sarkar, S., Thakur, S., & Bhattacharjee, S. (2021). Validating potent anti-inflammatory and anti-rheumatoid properties of Drynaria quercifolia rhizome methanolic extract through in vitro, in vivo, in silico and GC-MS-based profiling. BMC Complementary Medicine Therapies, 21(1), 89. https://doi: 10.1186/s12906-021-03265-7. [Google Scholar] [Crossref]
19. Mithraja, M. J., Irudayaraj, V., Kiruba, S., & Jeeva, S. (2012). Antibacterial efficacy of Drynaria quercifolia (L.) J. Smith (Polypodiaceae) against clinically isolated urinary tract pathogens. Asian Pacific Journal of Tropical Biomedicine, 2(1), S131-S135. https://doi.org/10.1016/S2221-1691(12)60143-9 [Google Scholar] [Crossref]
20. Molles, M. C. (2016). Ecology: Concepts and applications (7th ed.). McGraw Hill Education. [Google Scholar] [Crossref]
21. Nagalingum, N. S. (2016). Evolution and diversification of seedless land plants. In R. M. Kliman (Ed.), Encyclopedia of evolutionary biology (pp. 16-22). Academic Press. [Google Scholar] [Crossref]
22. National Parks Board Singapore. (n.d.). Drynaria quercifolia. FloraFaunaWeb. Retrieved from https://www.nparks.gov.sg/florafaunaweb/flora/1/5/1548 [Google Scholar] [Crossref]
23. Parashurama T. R., Sushma K., & Kariyajjanavar, P. (2013). Host variability of Drynaria quercifolia (L.) J.Sm. in Malnad Region, Karnataka, India. International Journal of Science and Research, 5(10), 311-313. [Google Scholar] [Crossref]
24. Rodriguez, A., Sabio, M. L. R., Corre, J. L. C., Camcam, T. S. B., Berido, C. A. D., Bautista, L. P., & Aviles, C. M. (2014). In vitro determination of anthelmintic property of tablet from the rhizomes Drynaria quercifolia Linn. (Basket fern) in Ascaris suum (Pig roundworm). [Undergraduate thesis, Our Lady of Fatima University]. https://registry.healthresearch.ph [Google Scholar] [Crossref]
25. Runa, J. F., Hossain, M., Hasanuzzaman, M., & Ramjan Ali, M. (2013). Investigation of phenolic profiles, cytotoxic potential and phytochemical screening of different extracts of Drynaria quercifolia J. Smith (leaves). Advanced Pharmaceutical Bulletin, 3(2), 465-467. [Google Scholar] [Crossref]
26. Sharpe, J. M., Mehltreter, K., & Walker, L. R. (2010). Fern ecology. Cambridge University Press. [Google Scholar] [Crossref]
27. Shamrov, I. I. (2015). Structural adaptations of epilithic ferns to rock-dwelling conditions. Russian Journal of Developmental Biology, 46(2), 94–102. https://doi.org/10.1134/S1995425515020043 [Google Scholar] [Crossref]
28. Sulaiman, S. P., Metali, F., & Cicuzza, D. (2023). Tropical terrestrial and epiphytic ferns have different leaf stoichiometry with ecological implications. Botany Letters. https://doi.org/10.1080/23818107.2023.2234567 [Google Scholar] [Crossref]
29. Sultan, S. E. (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44(4), 363-383. [Google Scholar] [Crossref]
30. Tan, J.B.L., & Lim, Y.Y. (2015). Antioxidant and tyrosinase inhibition activity of the fertile fronds and rhizomes of three different Drynaria species. BMC Research Notes, 8, 468. https://doi.org/10.1186/s13104-015-1414-3 [Google Scholar] [Crossref]
31. Winkler, U., & Zotz, G. (2010). 'And then there were three': Highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads. Annals of Botany, 106(3), 421-427. https://doi.org/10.1093/aob/mcq120 [Google Scholar] [Crossref]
32. Winter, K. (1985). Crassulacean acid metabolism. In J. Barber & N. R. Baker (Eds.), Photosynthetic mechanisms and the environment (pp. 329-387). Elsevier Science Publishers BV [Google Scholar] [Crossref]