Evaluation of Human Health Risks Associated with Selected Heavy Metal Exposure from Fumarolic Condensates in Mt. Suswa, Kenya

Authors

Gideon Yator

Department of Physical and Biological Sciences, Kabarak University, P.O. Private Bag 20157, Nakuru (Kenya)

Jackson John Kitetu

Department of Physical and Biological Sciences, Kabarak University, P.O. Private Bag 20157, Nakuru (Kenya)

Caroline Chepkirui

Department of Physical and Biological Sciences, Kabarak University, P.O. Private Bag 20157, Nakuru (Kenya)

Article Information

DOI: 10.51244/IJRSI.2025.1210000078

Subject Category: ENVIRONMENTAL TOXICOLOGY

Volume/Issue: 12/10 | Page No: 887-905

Publication Timeline

Submitted: 2025-10-02

Accepted: 2025-10-08

Published: 2025-11-04

Abstract

Fumarolic condensates in volcanic terrains often serve as critical water sources for nearby communities but may contain toxic heavy metals mobilized through magmatic degassing and hydrothermal leaching. This study evaluated the potential human health risks associated with exposure to selected heavy metals (arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg)) in fumarolic condensates from Mt. Suswa, Kenya. Condensate samples were collected from ten modified fumarolic vents actively used by local residents and analyzed using an Agilent 5110 ICP-OES for trace-metal quantification. The mean concentrations of As (3.86 ppb), Pb (1.43 ppb), and Cd (0.85 ppb) were all below World Health Organization (2022) and NEMA (2024) limits, while Hg remained undetected in all samples. The Heavy Metal Pollution Index (HPI) and Heavy Metal Evaluation Index (HEI) indicated moderate contamination (mean HPI = 20.46 ± 12.75; HEI = 0.70 ± 0.28), with higher enrichment observed in inner-caldera fumaroles, reflecting stronger magmatic influence. Health-risk assessment following USEPA (2011) methodology showed that non-carcinogenic hazard quotients (HQ) for As and Cd were below unity for both adults and children, though relatively higher in children, indicating greater susceptibility to chronic exposure. The carcinogenic risk (CR) for As ranged from 9.98 × 10⁻⁵ (F2) to 1.00 × 10⁻⁴ (F4) for adults and 9.78 × 10⁻⁵ (F10) to 1.92 × 10⁻⁵ (F6) for children, with the former slightly exceeding the upper USEPA threshold (10⁻⁶–10⁻⁴), suggesting a low but notable lifetime cancer probability from prolonged exposure. Although overall contamination levels were low, localized enrichment and cumulative exposure may pose health risks to vulnerable populations. These findings underscore the importance of continuous monitoring, community education, and sustainable mitigation strategies such as alternative safe-water supplies and affordable point-of-use treatment technologies in geothermal-affected regions.

Keywords

Mt. Suswa, fumarolic condensates, heavy metals, human health risk

Downloads

References

1. Agusto, M., Lamberti, M. C., Tassi, F., Carbajal, F., Llano, J., Nogués, V., Núñez, N., Sánchez, H., Rizzo, A., García, S., Yiries, J., Vélez, M. L., Massenzio, A., Velasquez, G., Bucarey, C., Gómez, M., Euillades, P., & Ramos, V. (2023). Eleven-Year Survey of the Magmatic-Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption. Geochemistry, Geophysics, Geosystems, 24(11), 1–19. https://doi.org/10.1029/2023GC011064 [Google Scholar] [Crossref]

2. Ahmed, T., Sarwar, B. A., Sultana, R., & Akhtar, S. (2023). Application of Heavy Metal Pollution Index ( HPI ) for Assesment of Drinking Water Quality in Islamabad. Research Square, 1(2), 1–15. [Google Scholar] [Crossref]

3. Anitha, B. H., Maya Naik, S. N., Nanjundaswamy, C., & Divyanand, M. S. (2021). Application of Heavy Metal Pollution Index and Metal Index for the Assessment of Groundwater Quality in Peenya Industrial Area. IOP Conference Series: Earth and Environmental Science, 822(1). https://doi.org/10.1088/1755-1315/822/1/012033 [Google Scholar] [Crossref]

4. APHA. (2022). Standard Methods for the Examination of Water and Wastewater (24th ed.)., Washington, DC, USA: American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 23rd editi, 1–1545. https://doi.org/10.2105/SMWW.2882.216 [Google Scholar] [Crossref]

5. Ayari, J., Barbieri, M., Boschetti, T., Barhoumi, A., Sellami, A., Braham, A., Manai, F., Dhaha, F., & Charef, A. (2023). Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment. Environments - MDPI, 10(9). https://doi.org/10.3390/environments10090151 [Google Scholar] [Crossref]

6. Ayaz, H., Nawaz, R., Nasim, I., Irshad, M. A., Irfan, A., Khurshid, I., Okla, M. K., Wondmie, G. F., Ahmed, Z., & Bourhia, M. (2023). Comprehensive human health risk assessment of heavy metal contamination in urban soils: insights from selected metropolitan zones. Frontiers in Environmental Science, 11(December), 1–17. https://doi.org/10.3389/fenvs.2023.1260317 [Google Scholar] [Crossref]

7. Badeenezhad, A., Soleimani, H., Shahsavani, S., Parseh, I., Mohammadpour, A., Azadbakht, O., Javanmardi, P., Faraji, H., & Babakrpur Nalosi, K. (2023). Comprehensive health risk analysis of heavy metal pollution using water quality indices and Monte Carlo simulation in R software. Scientific Reports, 13(1), 1–18. https://doi.org/10.1038/s41598-023-43161-3 [Google Scholar] [Crossref]

8. Bair, E. C. (2022). A Narrative Review of Toxic Heavy Metal Content of Infant and Toddler Foods and Evaluation of United States Policy. Frontiers in Nutrition, 9(June), 1–9. https://doi.org/10.3389/fnut.2022.919913 [Google Scholar] [Crossref]

9. Biedunkova, O., & Kuznietsov, P. (2024). Dataset on heavy metal pollution assessment in freshwater ecosystems. Scientific Data, 1–11. https://doi.org/10.1038/s41597-024-04116-z [Google Scholar] [Crossref]

10. Brraich, O. S., & Jassal, R. (2021). Evaluation of Water Quality Pollution Indices for Heavy Metal Contamination Monitoring in Surface Water of Sutlej River (India). Toxicology International, 28(4), 327–335. https://doi.org/10.18311/ti/2021/v28i4/27421 [Google Scholar] [Crossref]

11. Campeny, M., Menéndez, I., Ibáñez-Insa, J., Rivera-Martínez, J., Yepes, J., Álvarez-Pousa, S., Méndez-Ramos, J., & Mangas, J. (2023). The ephemeral fumarolic mineralization of the 2021 Tajogaite volcanic eruption (La Palma, Canary Islands, Spain). Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-33387-6 [Google Scholar] [Crossref]

12. Capitão, C., Martins Raquel, Snatos Osvaldo, Bicho Manuel, Szigeti Tamás, Katsonouri Andromachi, Bocca Beatrice, Ruggieri Flavia, Wasowicz Wojciech, Tolonen Hanna, & Virgolino Ana. (2022). Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Frontiers in Pediatrics. [Google Scholar] [Crossref]

13. Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium Toxicity and Health Effects—A Brief Summary. Molecules, 28(18), 1–16. https://doi.org/10.3390/molecules28186620 [Google Scholar] [Crossref]

14. Demissie, S., Mekonen, S., Awoke, T., Teshome, B., & Mengistie, B. (2024). Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study. Toxicology Reports, 12(January), 100–110. https://doi.org/10.1016/j.toxrep.2024.01.001 [Google Scholar] [Crossref]

15. Durowoju, O. S., Ekosse, G. I. E., & Odiyo, J. O. (2020). Occurrence and health-risk assessment of trace metals in geothermal springs within Soutpansberg, Limpopo Province, South Africa. International Journal of Environmental Research and Public Health, 17(12), 1–20. https://doi.org/10.3390/ijerph17124438 [Google Scholar] [Crossref]

16. Elbarbary, S., Abdel Zaher, M., Saibi, H., Fowler, A. R., & Saibi, K. (2022). Geothermal renewable energy prospects of the African continent using GIS. Geothermal Energy, 10(1), 1–19. https://doi.org/10.1186/s40517-022-00219-1 [Google Scholar] [Crossref]

17. Eldaw, E., Huang, T., Elubid, B., Mahamed, A. K., & Mahama, Y. (2020). A novel approach for indexing heavy metals pollution to assess groundwater quality for drinking purposes. International Journal of Environmental Research and Public Health, 17(4), 1–16. https://doi.org/10.3390/ijerph17041245 [Google Scholar] [Crossref]

18. Fahimah, N., Salami, I. R. S., Oginawati, K., & Mubiarto, H. (2024). Appraisal of pollution levels and non-carcinogenic health risks associated with the emergence of heavy metals in Indonesian community water for sanitation, hygiene, and consumption. Emerging Contaminants, 10(3), 100313. https://doi.org/10.1016/j.emcon.2024.100313 [Google Scholar] [Crossref]

19. Gantayat, R. R., Elumalai, V., Li, P., Patience, M. T., & Wolff-Boenisch, D. (2025). Comprehensive Source Apportionment and Health Risk Assessment of Metals Contamination with Unified Approach of Receptor Model and Monte Carlo Simulation in Limpopo, South Africa. Exposure and Health, 0123456789. https://doi.org/10.1007/s12403-025-00734-z [Google Scholar] [Crossref]

20. Inostroza, M., Moune, S., Moretti, R., Robert, V., Bonifacie, M., Chilin-Eusebe, E., Burtin, A., & Burckel, P. (2022). Monitoring Hydrothermal Activity Using Major and Trace Elements in Low-Temperature Fumarolic Condensates: The Case of La Soufriere de Guadeloupe Volcano. Geosciences (Switzerland), 12(7). https://doi.org/10.3390/geosciences12070267 [Google Scholar] [Crossref]

21. Jadoon, I., Ahmad, K., Nazir, A., Khan, S. A., Ismail, A. M., Matar, A., Alharbi, A. S., & Saleh, H. A. F. (2025). Health risk assessment and levels of heavy metals contaminated drinking water used by both adults and children from Nawanshahr town. Global Nest Journal, 27(4). https://doi.org/10.30955/gnj.07139 [Google Scholar] [Crossref]

22. kaur, R., Garkal, A., Sarode, L., Bangar, P., Mehta, T., Singh, D. P., & Rawal, R. (2024). Understanding arsenic toxicity: Implications for environmental exposure and human health. Journal of Hazardous Materials Letters, 5(August 2023), 100090. https://doi.org/10.1016/j.hazl.2023.100090 [Google Scholar] [Crossref]

23. Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z [Google Scholar] [Crossref]

24. Kumar, S., & Maurya, N. S. (2025). Analysis of heavy metal contamination in groundwater and associated probabilistic human health risk assessment using Monte Carlo simulation: A case study in Gaya, Bihar. Journal of Water and Health, 23(5), 630–647. https://doi.org/10.2166/wh.2025.348 [Google Scholar] [Crossref]

25. Mangi, P. (2016). Geothermal exploration and utilizaton in kenya. Table 1, 1–11. [Google Scholar] [Crossref]

26. Masikonte, L. N. (2020). Potential Environmental and Socio-economic Effects of Geothermal Exploitation on the Local Community: a Case of Suswa Geothermal Plant. [Google Scholar] [Crossref]

27. Mohamud, Y. N. (2013). 1D Joint Inversion of TEM and MT Data : Suswa Geothermal Field, Rift Valley, Kenya. 19. [Google Scholar] [Crossref]

28. Morales-deAvila, H., Gutiérrez, M., Colmenero-Chacón, C. P., Júnez-Ferreira, H. E., & Esteller-Alberich, M. V. (2023). Upward Trends and Lithological and Climatic Controls of Groundwater Arsenic, Fluoride, and Nitrate in Central Mexico. Minerals, 13(9). https://doi.org/10.3390/min13091145 [Google Scholar] [Crossref]

29. Mukwevho, N., Mabowa, M. H., Ntsasa, N., Mkhohlakali, A., Chimuka, L., Tshilongo, J., & Letsoalo, M. R. (2025). Seasonal Pollution Levels and Heavy Metal Contamination in the Jukskei River, South Africa. Applied Sciences (Switzerland), 15(6), 1–20. https://doi.org/10.3390/app15063117 [Google Scholar] [Crossref]

30. NEMA. (2024). Environmental Management and Co-ordination (Water Quality) Regulations. Kenya Gazette Supplemennt No. 68, 177, 1–25. [Google Scholar] [Crossref]

31. Nyairo, B., Shako, L., & Mutia, T. (2014). Environmental suitability analysis for geothermal development: A case study for suswa geothermal prospect, Kenya. Transactions - Geothermal Resources Council, 38, 865–869. [Google Scholar] [Crossref]

32. Obase, T., Sumino, H., Toyama, K., Kawana, K., Yamane, K., Yaguchi, M., Terada, A., & Ohba, T. (2022). Monitoring of magmatic–hydrothermal system by noble gas and carbon isotopic compositions of fumarolic gases. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-22280-3 [Google Scholar] [Crossref]

33. Okoro, H. K., Orosun, M. M., Agboola, A. F., Emenike, E. C., Nanduri, S., Kedia, N., Kariem, M., Priya, A., & Rab, S. O. (2025). Health risk assessments of heavy metals in dust samples collected from classrooms in Ilorin, Nigeria and its impact on public health. Heliyon, 11(4), e42769. https://doi.org/10.1016/j.heliyon.2025.e42769 [Google Scholar] [Crossref]

34. Prasad, B., & Bose, J. M. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower himalayas. Environmental Geology, 41(1–2), 183–188. https://doi.org/10.1007/s002540100380 [Google Scholar] [Crossref]

35. Raad, H. F., Pardakhti, A., & Kalarestaghi, H. (2021). Carcinogenic and Non carcinogenic Health Risk Assessment of Heavy Metals in Ground Drinking Water Wells of Bandar Abbas. Pollution, 7(2), 395–404. https://doi.org/10.22059/poll.2021.317359.995 [Google Scholar] [Crossref]

36. Saber, A. A., Al-Mashhadany, M. F. M., Hamid, A., Gabrieli, J., Tockner, K., Alsaif, S. S. A., Al-Marakeby, A. A. M., Segadelli, S., Cantonati, M., & Bhat, S. U. (2024). Carcinogenic and Non-Carcinogenic Health Risk Evaluation of Heavy Metals in Water Sources of the Nubian Sandstone Aquifer in the El-Farafra Oasis (Egypt). Water (Switzerland), 16(12). https://doi.org/10.3390/w16121649 [Google Scholar] [Crossref]

37. Saby, M., van Hinsberg, V., Pinti, D. L., Berlo, K., Gautason, B., Sigurðardóttir, Á., & Castro, M. C. (2024). Magmatic and rock-leaching contributions to the metal load in hydrothermal fluids at þeistareykir, Iceland. Applied Geochemistry, 176(October). https://doi.org/10.1016/j.apgeochem.2024.106213 [Google Scholar] [Crossref]

38. Sanjuan, B. (2024). Auxiliary Chemical Geothermometers Applied to Waters from Some East African Rift Areas (Djibouti, Ethiopia, Kenya) for Geothermal Exploration. Petroleum and Chemical Industry International, 7(4), 01–12. https://doi.org/10.33140/pcii.07.04.01 [Google Scholar] [Crossref]

39. Shetty, B. R., Pai, B. J., Salmataj, S. A., & Naik, N. (2024). Assessment of Carcinogenic and non-carcinogenic risk indices of heavy metal exposure in different age groups using Monte Carlo Simulation Approach. Scientific Reports, 14(1), 1–20. https://doi.org/10.1038/s41598-024-81109-3 [Google Scholar] [Crossref]

40. Sunguti, A. E., Kibet, J. K., Kinyanjui, T. K., Oyugi, A. M., & Muhizi, T. (2024). The analysis of potentially toxic heavy metal contamination in the Lake Bogoria geothermal springs. Discover Toxicology, 1(1). https://doi.org/10.1007/s44339-024-00003-9 [Google Scholar] [Crossref]

41. Taufiq, T. (2023). Arsenic Gas on Geothermal Area, Part III: Case Study and Correlation with Temperature. EAGE Conference on the Future of Energy - Role of Geoscience in the Energy Transition, 25–28. https://doi.org/10.3997/2214-4609.202372032 [Google Scholar] [Crossref]

42. Tokatli, C. (2024). AN APPLICATION OF HEAVY METAL POLLUTION INDEX AND HEAVY METAL EVALUATION INDEX TO EVALUATE THE WATER QUALITY OF ATIKHISAR DAM. November. [Google Scholar] [Crossref]

43. USEPA. (2011). Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), 1–1466. https://doi.org/EPA/600/R-090/052F [Google Scholar] [Crossref]

44. Werner, C. A., Kern, C., & Kelly, P. J. (2020). Chemical Evaluation of Water and Gases Collected from Hydrothermal Systems Located in the Central Aleutian Arc, August 2015. USGS Scientific Investigations Report, 2020–5043(August 2015), 35 p. [Google Scholar] [Crossref]

45. WHO. (2022). Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. In ReVision (Vol. 21, Issue 6). [Google Scholar] [Crossref]

46. Wu, H., Wang, X., Ren, H., Gao, M., Cai, J., & Cheng, J. (2024). Groundwater Heavy Metal Pollution Characteristics and Health Risk Assessment in Typical Industrial Parks in Southwest China. Water (Switzerland), 16(23), 1–23. https://doi.org/10.3390/w16233435 [Google Scholar] [Crossref]

47. Yaguchi, M., Ohba, T., & Kanno, S. (2025). mber 2024Geochemical evaluation for the fumarolic gases collected at Ojigokudani, Iwate volcano, Japan in Septe. Earth, Planets and Space, 77(1). https://doi.org/10.1186/s40623-025-02260-3 [Google Scholar] [Crossref]

48. Yao, B., Zhou, X., Qiu, D., Du, J., He, M., Tian, J., Zeng, Z., Wang, Y., Yan, Y., Xing, G., Cui, S., Li, J., Dong, J., Li, Y., & Zhang, F. (2024). Geochemical Characteristics of Trace Elements of Hot Springs in the Xianshuihe–Xiaojiang Fault Zone. Water (Switzerland), 16(5). https://doi.org/10.3390/w16050680 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles