Advancing Bioremediation through Engineered Nanoparticles and Microbial Interactions.

Authors

Sarah Oluwaseun Julius

University of Ibadan, Department of Microbiology (Nigeria)

Jimoh Islam Ariremako

University of Ilorin, Department of Microbiology (Nigeria)

Olowolafe Moronkemi Oluwaseun

University of Ibadan, Department of Botany (Nigeria)

Muritala Ilyas Okikiola

University of Ibadan, Department of Petroleum Engineering (Nigeria)

Peter Obaloluwa Agboola

University of Barcelona, Department of Chemistry (Nigeria)

Auwal Shehu Ali

Federal Teaching Hospital; Kastsina, Department of Pharmacy (Nigeria)

Ahmad Alaaya Mashood

Kyungpook National University; South Korea, Department of Environmental Engineering (Nigeria)

Sunusi Abubakar Adamu

Gombe state University, Department of Geography and Environmental Management (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.1210000137

Subject Category: Biology/Environmental Science

Volume/Issue: 12/10 | Page No: 1538-1552

Publication Timeline

Submitted: 2025-10-07

Accepted: 2025-10-14

Published: 2025-11-08

Abstract

Environmental pollution arising from industrialization, agricultural intensification, and rapid urbanization remains a major ecological and public health concern. Persistent contaminants such as heavy metals, hydrocarbons, pesticides, plastics, and pharmaceutical residues accumulate in soil and water, disrupting ecosystems and threatening human well-being. Conventional remediation methods, including chemical treatments, incineration, and physical removal, often provide incomplete solutions due to high costs, partial pollutant removal, and the generation of secondary waste.
Bioremediation offers a more sustainable alternative by harnessing microbial metabolism to degrade or detoxify pollutants. However, its efficiency is often limited by low pollutant bioavailability, slow degradation rates, and microbial sensitivity to toxic environments. Advances in nanotechnology have introduced engineered nanoparticles (ENPs) that can overcome these barriers through synergistic interactions with microorganisms. ENPs enhance pollutant solubilization, facilitate electron transfer, and improve microbial tolerance under stress, resulting in more efficient and adaptable remediation systems.
This review synthesizes recent progress in nano–bio remediation, emphasizing applications in heavy metal detoxification, hydrocarbon degradation, wastewater treatment, and plastic biodegradation. It also critically examines nanoparticle toxicity, environmental persistence, cost implications, and regulatory uncertainties. Finally, the paper highlights future directions focused on biocompatible nanomaterials, engineered microbial strains, interdisciplinary collaboration, and circular economy integration to ensure the safe, scalable, and sustainable deployment of nano–bio remediation technologies.

Keywords

Bioremediation, Engineered nanoparticles, Microbial interactions, nano-biotechnology, pollutant degradation

Downloads

References

1. United Nations Environment Programme (UNEP). Global Environment Outlook 6: Healthy Planet, Healthy People. Nairobi: UNEP; 2019. [Google Scholar] [Crossref]

2. Zhang Q, Xu EG, Li J, Chen Q, Ma L, Zeng EY, et al. A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environ Sci Technol. 2020;54(7):3740–51. [Google Scholar] [Crossref]

3. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72. [Google Scholar] [Crossref]

4. Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017;223:277–86. [Google Scholar] [Crossref]

5. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. [Google Scholar] [Crossref]

6. Wright SL, Kelly FJ. Plastic and human health: A micro issue? Environ Sci Technol. 2017;51(12):6634–47. [Google Scholar] [Crossref]

7. Kümmerer K. The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J Environ Manage. 2009;90(8):2354–66. [Google Scholar] [Crossref]

8. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512. [Google Scholar] [Crossref]

9. Reddy KR, Cameselle C. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. Hoboken: Wiley; 2009. [Google Scholar] [Crossref]

10. Vidali M. Bioremediation. An overview. Pure Appl Chem. 2001;73(7):1163–72. [Google Scholar] [Crossref]

11. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. Bioremediation approaches for organic pollutants: A critical perspective. Environ Int. 2011;37(8):1362–75. [Google Scholar] [Crossref]

12. Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques – classification based on site of application: Principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32(11):180. [Google Scholar] [Crossref]

13. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol. 2013;44(6):1962–7. [Google Scholar] [Crossref]

14. Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211–212:112–25. [Google Scholar] [Crossref]

15. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev. 2000;1(1):1–21. [Google Scholar] [Crossref]

16. Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol. 2008;42(16):5843–59. [Google Scholar] [Crossref]

17. Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, et al. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health. 2020;42(1):147–58. [Google Scholar] [Crossref]

18. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol. 2021;19:1–24. [Google Scholar] [Crossref]

19. Nowack B, Ranville JF, Crane M, Handy R, Baun A, Brouwer D, et al. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2012;31(1):50–9. [Google Scholar] [Crossref]

20. Jie Y, He M, Liu B, Jiang H. Interactions between engineered nanomaterials and microorganisms: Mechanisms, environmental impacts and applications. Ecotoxicol Environ Saf. 2019;169:483–95. [Google Scholar] [Crossref]

21. Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem Eng J. 2016;286:640–62. [Google Scholar] [Crossref]

22. Kumar N, Shah V, Walker VK. Perturbation of an Arctic soil microbial community by metal oxide nanoparticles. Environ Toxicol Chem. 2019;38(3):525–32. [Google Scholar] [Crossref]

23. Sharma M, Sharma N, Jeon J, Lee S, Seo J. Nanoparticle-based emerging strategies for bioremediation of polluted environments: Applications and future perspectives. Environ Eng Res. 2020;25(6):847–61. [Google Scholar] [Crossref]

24. Wang W, Zhou W, Jiang Q, Zhang Y, Xu J. Enhanced bioremediation of petroleum hydrocarbons by nano zero-valent iron coupled with microbial consortium. J Hazard Mater. 2019;373:7–16. [Google Scholar] [Crossref]

25. Li Y, Gao Y, Zhang X, Yan X, Zhao H, Li X, et al. Graphene oxide-based nanomaterials for efficient removal of organic pollutants from wastewater. Chemosphere. 2020;246:125575. [Google Scholar] [Crossref]

26. Singh R, Shukla A, Yadav RS, Sharma PK. Polymeric nanoparticles in environmental remediation: A review on applications and perspectives. Environ Nanotechnol Monit Manag. 2022; 18:100704. [Google Scholar] [Crossref]

27. Hussain CM, Panwar J, Lee J, Sillanpää M. Magnetic nanoparticles: A sustainable platform for environmental remediation. J Environ Chem Eng. 2017;5(4):3606–13. [Google Scholar] [Crossref]

28. Zhou D, He B, Yang J, Hu X, Song W, Wang Y, et al. Application of magnetic nanoparticles for wastewater treatment: A review. Sci Total Environ. 2018;642:1028–39. [Google Scholar] [Crossref]

29. Das P, Barua S, Sarkar S, Chatterjee S, Mukherjee A. Nanoparticle toxicity in microorganisms: Mechanisms, impact and applications. Environ Nanotechnol Monit Manag. 2021;16:100502. [Google Scholar] [Crossref]

30. Vázquez-Núñez E, Molina-Guerrero CE, Peña-Castro JM, Fernández-Luqueño F, de la Rosa-Álvarez MG. Use of nanotechnology for the bioremediation of contaminants: a review. Processes. 2020;8(7):826. [Google Scholar] [Crossref]

31. Jaspreet K, Balpreet K, Amandeep S, Navneet K, Harmandeep S. Reactive oxygen species generation and microbial adaptations in response to engineered nanomaterials: mechanisms and implications. J Appl Microbiol. 2019;127(4):950–65. [Google Scholar] [Crossref]

32. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXS. 2012;101:133–64. [Google Scholar] [Crossref]

33. Ghorbani M, Karimi B, Karimi H. Application of nano zero-valent iron and microbial consortia for remediation of heavy metal contaminated soil. Chemosphere. 2021;263:127973. [Google Scholar] [Crossref]

34. Li J, Huang Y, Li Y, Xu Y, Wang X, Zhang H. Synergistic remediation of arsenic and cadmium contaminated soils using iron oxide nanoparticles and indigenous microorganisms. J Hazard Mater. 2022;423:127115. [Google Scholar] [Crossref]

35. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol Res Int. 2011;2011:941810. [Google Scholar] [Crossref]

36. Ghosh P, Rathour R, Kar D, Singh RS, Chandra R. Synergistic effect of engineered nanoparticles and microbial consortia for enhanced degradation of polycyclic aromatic hydrocarbons. Environ Technol Innov. 2021;24:101908. [Google Scholar] [Crossref]

37. Zhang C, Chen X, Li C, Huang J, Yang W, Zhang W, et al. Nanoparticle-assisted enzymatic biodegradation of polyethylene terephthalate and polyethylene. Environ Sci Technol. 2021;55 (5):3074–85. [Google Scholar] [Crossref]

38. Mandeep, Shukla P. Microbial Nanotechnology for Bioremediation of Industrial Wastewater. Frontiers in Microbiology. 2020 Nov 2;11:590631. [Google Scholar] [Crossref]

39. Kumar R, Barati B, Mohanraj S, Saptoro A, Khanal SK. Engineered nanoparticles for environmental bioremediation: Mechanisms and applications. Environ Nanotechnol Monit Manag. 2019;12:100273. [Google Scholar] [Crossref]

40. Wang Z, Zhang T, Li J, Yu Y, Chen H, Sun Y, et al. Engineered nanoparticles for microbial-assisted pollutant degradation: Advances and perspectives. J Hazard Mater. 2019;374:1–13. [Google Scholar] [Crossref]

41. Rajput V, Minkina T, Sushkova S, Behal A, Singh R, Gorovtsov A, et al. Effects of nanoparticles on crops and soil microbial communities. Sustainability. 2020;12(22):9669. [Google Scholar] [Crossref]

42. Singh R, Shukla V, Gupta P, Pandey H, Singh N, Mishra V. Recent advances in nanobioremediation: A step toward sustainable environment. J Environ Chem Eng. 2022;10(3):107329. [Google Scholar] [Crossref]

43. Das S, Thomas S, Balakrishnan N, Sreekanth TVM. Environmental fate, toxicity and risk management of nanomaterials. Curr Opin Green Sustain Chem. 2021;29:100459. [Google Scholar] [Crossref]

44. Li M, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek EMV. Stability, bioavailability, and toxicity of engineered nanoparticles in the environment. Sci Total Environ. 2020;722:137614. [Google Scholar] [Crossref]

45. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 2020;160(3):643–50. [Google Scholar] [Crossref]

46. Hussain CM, Mitra S, Das S. Nanotechnology in environmental monitoring and remediation: Challenges and future outlook. Environ Sci Pollut Res. 2017;24(28):22217–31. [Google Scholar] [Crossref]

47. Zhou C, Wang J, Li T, Yu J, Yang C, Xu L, et al. The fate and transport of engineered nanoparticles in the environment: Implications for risk assessment. Environ Int. 2018;119:1–9. [Google Scholar] [Crossref]

48. Crane M, Scott-Fordsmand JJ. Toxicity testing under environmentally relevant conditions: Practical considerations. Environ Toxicol Chem. 2012;31(2):267–70. [Google Scholar] [Crossref]

49. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. [Google Scholar] [Crossref]

50. Gupta S, Rai M. Application of nanotechnology in bioremediation: Recent developments, challenges, and future perspectives. Int J Environ Sci Technol. 2023;20:5587–602. [Google Scholar] [Crossref]

51. United Nations. Transforming our world: The 2030 agenda for sustainable development. New York: UN; 2020. [Google Scholar] [Crossref]

52. Zhao Y, Wang L, Li X, Liu Y, Huang J, Yu H. Circular economy and nanotechnology: Synergies for sustainable environmental management. J Clean Prod. 2023;389:136040. [Google Scholar] [Crossref]

53. Yu Y, Zhang H, Lu S, et al. Photocatalytic material–microbe hybrids: applications in pollutant degradation and electron transfer enhancement. Front Bioeng Biotechnol. 2022;10:815181. [Google Scholar] [Crossref]

54. Bundschuh M, Filser J, Luderwald S, McKee MS, Metreveli G, Schaumann GE, et al. Nanoparticles in the environment: Where do we come from, where do we go to? Environ Sci Eur. 2018;30(1):6. [Google Scholar] [Crossref]

55. Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H, et al. Evaluation of exposure for engineered nanomaterials in soil and sediment. Environ Sci Technol. 2016;50(9):4587–603. [Google Scholar] [Crossref]

56. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–51. [Google Scholar] [Crossref]

57. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of engineered nanoparticles in the environment. Anal Chem. 2013;85(6):3036–49. [Google Scholar] [Crossref]

58. Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local. Environ Sci Technol Lett. 2014;1(1):65–70. [Google Scholar] [Crossref]

59. Hansen SF, Heggelund LR, Revilla Besora P, Mackevica A, Boldrin A, Baun A. Nanoproducts – what is actually available to European consumers? Environ Sci Nano. 2016;3(1):169–80. [Google Scholar] [Crossref]

60. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7. [Google Scholar] [Crossref]

61. Barrett K, Whelan R, McCarthy S. Environmental justice in the age of nanotechnology. NanoEthics. 2021;15:45–60. [Google Scholar] [Crossref]

62. Schomberg R. From the ethics of technology towards an ethics of knowledge policy & knowledge assessment. Brussels: European Commission; 2013. [Google Scholar] [Crossref]

63. Falkner R, Jaspers N. Regulating nanotechnologies: Risk, uncertainty and the global governance gap. Glob Environ Polit. 2012;12(1):30–55. [Google Scholar] [Crossref]

64. Aliyari Rad S, Nobaharan K, Pashapoor N, Pandey J, Dehghanian Z, Senapathi V, et al. Nano-Microbial Remediation of Polluted Soil: A Brief Insight. Sustainability. 2023;15(1):876. [Google Scholar] [Crossref]

65. Yang Z, Shen J. A review: metal and metal oxide nanoparticles for environmental applications. Nanoscale. 2025;17:15068–85. [Google Scholar] [Crossref]

66. Ayilara MS, Adeleye SA, Adewale BA, Ajayi OS, Olanrewaju MO, Adegbite OS, et al. Types, mechanisms, and factors affecting microbial bioremediation of pollutants. Egypt J Biol Pest Control. 2023;33:51. [Google Scholar] [Crossref]

67. Unimke A, Okezie O, Mohammed SE, Mmuoegbulam AO, Abdulahi S, Ofon UA, et al. Microbe–plant–nanoparticle interactions: role in bioremediation of petroleum hydrocarbons. Water Sci Technol. 2024;90(10):2870–93. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles