Endophytic Nanoparticle: An Emerging Frontier in Biomedical, Agricultural, and Environmental Applications

Authors

Nzube Ruth Amaeze

Nnamdi Azikiwe University Awka, Nigeria Alvan Chimere Okechukwu – Howard University, USA (Nigeria)

Blessing Umeokoli

Nnamdi Azikiwe University Awka, Nigeria (Nigeria)

Alvan Okechukwu

Howard University (USA)

Article Information

Publication Timeline

Submitted: 2025-10-07

Accepted: 2025-10-14

Published: 2025-11-09

Abstract

Endophytic microorganisms that colonize plant tissues without causing harm serve as sustainable bio-factories for the green synthesis of metallic and metal-oxide nanoparticles. This review provides an integrated synthesis of endophytic diversity, biosynthetic mechanisms, and cross-sector applications, addressing the fragmentation in previous reports. Fungal endophytes particularly Aspergillus and Penicillium species and bacterial genera such as Bacillus and Streptomyces mediate nanoparticle formation, including silver, gold, zinc oxide, copper oxide, and selenium, through NADH-dependent reductase activity and metabolite-based bio-capping involving polyphenols, terpenoids, and alkaloids. Recent studies highlight Talaromyces funiculosus derived silver nanoparticles showing strong antibacterial zones (26 mm) and Penicillium verhagenii-produced selenium nanoparticles exhibiting selective anticancer cytotoxicity (IC₅₀ = 225–283 μg/mL) while sparing normal cells. We further discuss extracellular versus intracellular synthesis routes, correlations between synthesis parameters and particle size, morphology, and stability, and summarize biomedical, agricultural, and environmental applications using quantitative activity metrics. Statistical optimization tools including Taguchi and response-surface methodologies are emphasized for enhancing reproducibility and scalability. Finally, future directions involving metabolic engineering, OSMAC strategies to activate silent biosynthetic clusters, and omics-guided optimization are outlined. By linking mechanistic insights with translational outcomes, this review establishes endophyte-mediated nanotechnology as a scalable, eco-efficient platform addressing antimicrobial resistance, cancer therapy, food security, and environmental remediation.

Keywords

ok

Downloads

References

1. Sawalha H, Moulton SE. Role of endophytic fungi in the biosynthesis of metal nanoparticles and their potential as nanomedicines. Swinburne Univ Technol, Hawthorn, VIC, Australia. [Google Scholar] [Crossref]

2. Seetharaman PK, Chandrasekaran R. Functional attributes of myco-synthesized silver nanoparticles from endophytic fungi: a new implication in biomedical applications. J Fungi. [Google Scholar] [Crossref]

3. Atallah OO, Mazrou YSA, Atia MM, Nehela Y, Abdelrhim AS, Nader MM. Polyphasic characterization of four Aspergillus species as potential biocontrol agents for white mold disease of bean. J Fungi. 2022;8(6):626. https://doi.org/10.3390/jof8060626 [Google Scholar] [Crossref]

4. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Colloids Surf B Biointerfaces. 2012;90:56–60. https://doi.org/10.1016/j.colsurfb.2011.09.042 [Google Scholar] [Crossref]

5. Ghosh S. Microbial nano-factories: synthesis and biomedical applications. J Appl Microbiol. 2022;133(1):3–18. https://doi.org/10.1111/jam.15265 [Google Scholar] [Crossref]

6. Sati A, Rana TN. Silver nanoparticles (AgNPs): comprehensive insights into biosynthesis, key influencing factors, multifaceted applications, and toxicity—A 2024 update. Mater Today Chem. 2024;34:101255. https://doi.org/10.1016/j.mtchem.2023.101255 [Google Scholar] [Crossref]

7. Ibrahim E, Lu J. Biosynthesis of silver nanoparticles using onion endophytic bacterium and its antifungal activity against rice pathogen Magnaporthe oryzae. J Nanobiotechnol. 2020;18:131. https://doi.org/10.1186/s12951-020-00679-w [Google Scholar] [Crossref]

8. Akther T, Mathip V. Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Biomed Pharmacother. 2021;142:111954. https://doi.org/10.1016/j.biopha.2021.111954 [Google Scholar] [Crossref]

9. Campaña AL. Insights into the bacterial synthesis of metal nanoparticles. Crit Rev Microbiol. 2023;49(2):245–258. https://doi.org/10.1080/1040841X.2022.2142049 [Google Scholar] [Crossref]

10. Hussein HG, El-Sayed R. Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. Biotechnol Rep. 2022;33:e00743. https://doi.org/10.1016/j.btre.2022.e00743 [Google Scholar] [Crossref]

11. Chen Z. Biosynthesis of bimetallic silver–copper oxide nanoparticles using endophytic Clonostachys rosea ZMS36 and their biomedical applications. Nanomaterials. 2023;13(9):1435. https://doi.org/10.3390/nano13091435 [Google Scholar] [Crossref]

12. Omran BA, Rabbee MF, Abdel-Salam MO, Baek KH. Mycofabrication of bimetal oxide nanoparticles (CuO/TiO₂) using the endophytic fungus Trichoderma virens: material properties and microbiocidal effects. Mater Sci Eng C. 2023;145:112512. https://doi.org/10.1016/j.msec.2023.112512 [Google Scholar] [Crossref]

13. Suresh IJ, Lydia NJ, U.A. Marine endophytic fungi isolated from Gulf of Mannar: a source for new-generation pharmaceutical drugs and biosynthesis of silver nanoparticles. J Appl Microbiol. 2022;132(6):4194–4206. https://doi.org/10.1111/jam.15461 [Google Scholar] [Crossref]

14. Sharma BK, Dakshinamoorth BM. Current state and future prospects of microbiologically produced nanoparticles: a narrative review. Front Nanotechnol. 2023;5:112233. https://doi.org/10.3389/fnano.2023.112233 [Google Scholar] [Crossref]

15. Oliveira MAM, Calado ML, Guerreiro SFC. Improved biosynthesis and characteristics of silver nanoparticles using marine endophytic fungi exposed to hypo-osmotic stress. Mar Drugs. 2021;19(9):512. https://doi.org/10.3390/md19090512 [Google Scholar] [Crossref]

16. Nassar AR, Eid AM. Exploring antimicrobial, antioxidant, anticancer, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. J Nanobiotechnol. 2023;21:122. https://doi.org/10.1186/s12951-023-01915-7 [Google Scholar] [Crossref]

17. Álvarez-Chimal R. Green synthesis of nanoparticles: a biological approach. IntechOpen. 2023. https://doi.org/10.5772/intechopen.1002203 [Google Scholar] [Crossref]

18. Verma N. Harnessing biological synthesis: zinc oxide nanoparticles for plant biotic stress management. Plant Sci Today. 2022;9(3):445–453. https://doi.org/10.14719/pst.1471 [Google Scholar] [Crossref]

19. Meena M. Endophytic nanotechnology: an approach to scope and potential applications. [Google Scholar] [Crossref]

20. Microbiol Res. 2022;259:126992. https://doi.org/10.1016/j.micres.2022.126992 [Google Scholar] [Crossref]

21. Mikhailova EO. Selenium nanoparticles: green synthesis and biomedical application. Appl Biochem Microbiol. 2021;57(6):735–748. https://doi.org/10.1134/S0003683821060120 [Google Scholar] [Crossref]

22. Ilahi N, Haleem A, Iqbal S, Fatima N, Sajjad W, Sideeq A, Ahmed S. Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum NFW16 and their antibacterial [Google Scholar] [Crossref]

23. potential. Biocatal Agric Biotechnol. 2021;36:102136. https://doi.org/10.1016/j.bcab.2021.102136 [Google Scholar] [Crossref]

24. Kousar R, Naeem M, Jamal MI. Exploring anticancer activities of bioactive compounds derived from endophytic fungi: mechanisms and future perspectives. Front Pharmacol. 2023;14:115678. https://doi.org/10.3389/fphar.2023.115678 [Google Scholar] [Crossref]

25. Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. J Appl Nat Sci. 2023;15(2):455–468. https://doi.org/10.31018/jans.v15i2.4464 [Google Scholar] [Crossref]

26. Dey S. A critical review on zinc oxide nanoparticles: synthesis, properties, and biomedical applications. Adv Pharm Bull. 2022;12(4):678–695. https://doi.org/10.34172/apb.2022.068 [Google Scholar] [Crossref]

27. Zhou XQ. Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Food Chem. 2023;410:135451. https://doi.org/10.1016/j.foodchem.2022.135451 [Google Scholar] [Crossref]

28. El Deeb BA. Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation. Microb Pathog. 2021;158:105019. https://doi.org/10.1016/j.micpath.2021.105019 [Google Scholar] [Crossref]

29. Yang J, Hsu Y, Liu R, Chen D, Zhou Z, Zou J, Xiong P, Zhou L. Advances in natural product-based nanomaterials for treatment of acute lung injury. Acta Pharm Sin B. 2022;12(5):2341–2356. https://doi.org/10.1016/j.apsb.2022.01.015 [Google Scholar] [Crossref]

30. Arora A, Lashani E, Turner RJ. Bacterial synthesis of metal nanoparticles as antimicrobials. [Google Scholar] [Crossref]

31. J Appl Microbiol. 2023;134(1):23–39. https://doi.org/10.1111/jam.15535 [Google Scholar] [Crossref]

32. Manganyi MC. Exploring the potential of endophytic microorganisms and nanoparticles for enhanced water remediation. Environ Nanotechnol Monit Manag. 2024;22:100567. https://doi.org/10.1016/j.enmm.2024.100567 [Google Scholar] [Crossref]

33. Sharmila M. Bacillus amyloliquefaciens-derived nanoparticles encumber phytopathogens and enhance tomato seedling growth. Plant Dis. 2024;108(1):122–133. https://doi.org/10.1094/PDIS-05-22-1021-RE [Google Scholar] [Crossref]

34. Koul B. Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biotechnol Adv. 2023;60:108123. https://doi.org/10.1016/j.biotechadv.2022.108123 [Google Scholar] [Crossref]

35. Hulikere M, Josh CG. Antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus Cladosporium cladosporioides. Mater Lett. 2022;320:132339. https://doi.org/10.1016/j.matlet.2022.132339 [Google Scholar] [Crossref]

36. Kathiravan A, Udayan E. Biological potential of mycosynthesized selenium nanoparticles from endophytic Curvularia sp. LCJ413. J Trace Elem Med Biol. 2023;76:127090. https://doi.org/10.1016/j.jtemb.2022.127090 [Google Scholar] [Crossref]

37. Ao B, Du Q. Synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Food Biosci. 2024;55:103448. https://doi.org/10.1016/j.fbio.2023.103448 [Google Scholar] [Crossref]

38. Osma AI. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: a review. Renew Sustain Energy Rev. 2024;187:113529. https://doi.org/10.1016/j.rser.2023.113529 [Google Scholar] [Crossref]

39. Jia J, Zhao S. Engineered nanoparticles for treatment of Alzheimer’s disease. Adv Drug Deliv Rev. 2023;198:113908. https://doi.org/10.1016/j.addr.2023.114908 [Google Scholar] [Crossref]

40. Zhang H, Zhou H. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. J Inorg Biochem. 2022;235:111955. https://doi.org/10.1016/j.jinorgbio.2022.111955 [Google Scholar] [Crossref]

41. Gunasekaran T, Haile T. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Front Pharmacol. 2022;13:835429. https://doi.org/10.3389/fphar.2022.835429 [Google Scholar] [Crossref]

42. Abdelrahman SEA, El Hawary S, Mohsen E, El Raey MA. Bio-fabricated zinc oxide nanoparticles mediated by endophytic fungus Aspergillus sp. SA17 with antimicrobial and anticancer activities: in vitro and in silico studies. J Appl Microbiol. 2024;136(3):899–912. https://doi.org/10.1111/jam.16290 [Google Scholar] [Crossref]

43. Shi H, Wen H, Xie S, Li Y. Antifungal activity and mechanisms of AgNPs and their combination with azoxystrobin against Magnaporthe oryzae. Pestic Biochem Physiol. 2024;194:105510. https://doi.org/10.1016/j.pestbp.2023.105510 [Google Scholar] [Crossref]

44. Mahmoud RK. Effect of ZnO-NPs on Rhizoctonia solani causing root and stem rot on broad bean (Vicia faba L.). J Agric Sci Technol. 2023;25(2):77–86. [Google Scholar] [Crossref]

45. Shah IH, Sabir IA, Rehman A, Hameed MK. Co-application of copper oxide nanoparticles and Trichoderma harzianum: physiological, enzymatic and ultrastructural responses for the mitigation of salt stress. Plant Physiol Biochem. 2024;204:107102. https://doi.org/10.1016/j.plaphy.2024.107102 [Google Scholar] [Crossref]

46. El-Sharkawy RM, Khairy M, Zaki MEA, Al-Tabbakh A. Endophytic Aspergillus japonicus-mediated biosynthesis of magnesium oxide nanoparticles: sustainable dye removal and in silico molecular docking evaluation of antibacterial activity. Microb Cell Fact. 2025;24:44. https://doi.org/10.1186/s12934-025-02648-6 [Google Scholar] [Crossref]

47. Rosbero T. Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. J Environ Chem Eng. 2017;5(3):2854–2862. https://doi.org/10.1016/j.jece.2017.05.009 [Google Scholar] [Crossref]

48. Bekhit F, Farag S, Attia AM. Characterization of immobilized magnetic Fe₃O₄ nanoparticles on Raoultella ornithinolytica sp. and its application for azo dye removal. Microorganisms. 2022;10(7):1352. https://doi.org/10.3390/microorganisms10071352 [Google Scholar] [Crossref]

49. Eid AM, Fouda A, Niedbała G, Hassan SE, Salem SS, Abdo AM, Hetta HF, Shaheen TI. Endophytic Streptomyces laurentii-mediated green synthesis of silver nanoparticles with antibacterial and anticancer properties for functional textile fabrication. Int J Biol Macromol. 2024;253:127120. https://doi.org/10.1016/j.ijbiomac.2024.127120 [Google Scholar] [Crossref]

50. Al-Aska AA, Hashem AH. Green biosynthesis of zinc oxide nanoparticles using Pluchea indica leaf extract: antimicrobial and photocatalytic activities. Mater Sci Eng B. 2024;296:116032. https://doi.org/10.1016/j.mseb.2024.116032 [Google Scholar] [Crossref]

51. Vas NV, Sundari SK, Jeyachandran S. Degradation of microplastics by zinc oxide nanoparticles synthesized using Piper longum leaf extract. Polym Degrad Stab. 2024;238:110284. https://doi.org/10.1016/j.polymdegradstab.2024.110284 [Google Scholar] [Crossref]

52. Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, Zhang P, Ye S. Using nanomaterials to facilitate the phytoremediation of contaminated soil. Environ Sci Technol. 2023;57(4):1789–1803. https://doi.org/10.1021/acs.est.2c09472 [Google Scholar] [Crossref]

53. Blessing O. Umeokoli, Weaam Ebrahim, Mona El-Neketi, Werner E. G. Müller, Rainer Kalscheuer, Wenhan Lin, Zhen Liu, Chaidir Chaidir, Peter Proksch. New depsidone derivative from mangrove-sediment-derived fungus Lasiodiplodia theobromae. Natural Product Research (2018). DOI: 10.1080/14786419.2018.1496430. https://doi.org/10.1080/14786419.2018.1496430 [Google Scholar] [Crossref]

54. Xiaoqin Yu, Werner E. G. Müller, Dieter Meier, Rainer Kalscheuer, Zhiyong Guo, Kun Zou, Blessing O. Umeokoli, Zhen Liu, Peter Proksch. Polyketide derivatives from mangrove-derived endophytic fungus Pseudopestalotiopsis theae. Marine Drugs 18 (2020) 129. https://doi.org/10.3390/md18020129 [Google Scholar] [Crossref]

55. H. Yu, S.-P. Hofert, M. Moussa, C. Janiak, W. E. G. Müller, B. O. Umeokoli, H. Dai, Z. Liu, P. Proksch. Polyketides and nitrogenous metabolites from the endophytic fungus Phomopsis sp. D15a2a. Tetrahedron Letters 60 (2019) 151325. https://doi.org/10.1016/j.tetlet.2019.151325 [Google Scholar] [Crossref]

56. Ebube S. Izuogu, Blessing O. Umeokoli, Onyeka C. Obidiegwu, Ugochukwu M. Okezie, Chukwubuikem C. Okolo, Damilola C. Akintayo, Festus B. C. Okoye. Screening of secondary metabolites produced by a mangrove-derived Nigrospora species isolated from Rhizophora racemosa for antioxidant and antimicrobial properties. GSC Adv. Res. Rev. 15 (2023) 47–60. [Google Scholar] [Crossref]

57. Hao Wang, Blessing O. Umeokoli, Peter Eze, Christian Heering, Christoph Janiak, Werner E. G. Müller, Raha S. Orfali, Rudolf Hartmann, Haofu Dai, Wenhan Lin, Zhen Liu, Peter Proksch. Secondary metabolites of the lichen-associated fungus Apiospora montagnei. Tetrahedron Letters 58 (2017) 17–21. https://doi.org/10.1016/j.tetlet.2017.03.052 [Google Scholar] [Crossref]

58. P. Madu, A. Okechukwu, E. Okoro, N. Amaeze. Antibacterial activity of honey and palm kernel oil on Staphylococcus aureus. IOSR J. Pharm. Biol. Sci. 17 (2025) 39–43. [Google Scholar] [Crossref]

59. A. Okechukwu, E. K. Okoro, R. Amaeze, S. E. Isah. Phytochemical analysis and antimicrobial activity of Moringa oleifera leaf extract. IOSR J. Appl. Chem. 15 (2022). [Google Scholar] [Crossref]

60. A. Okechukwu, S. Omoraka, S. Bello, N. Amaeze, O. Joseph, E. Okoro. Schiff bases and their ability to remove heavy metals. IOSR J. Appl. Chem. 15 (2022) 7–14. [Google Scholar] [Crossref]

61. C. Okolo, A. Okechukwu, V. Akintaju, E. Okoro, O. Iyama, S. Ewoma et al. Physicochemical analysis of groundwater in Amukachi and Obiudo Akabo, Ikeduru LGA, Nigeria. IOSR J. Appl. Chem. 15 (2022) 6–12. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles