Bridging AI and Chemotherapy: Translating Precision Medicine into Improved Patient Outcomes
Authors
NSHM Knowledge Campus Durgapur West Bengal (India)
NSHM Knowledge Campus Durgapur West Bengal (India)
NSHM Knowledge Campus Durgapur West Bengal (India)
NSHM Knowledge Campus Durgapur West Bengal (India)
NSHM Knowledge Campus Durgapur West Bengal (India)
NSHM Knowledge Campus Durgapur West Bengal (India)
Article Information
DOI: 10.51244/IJRSI.2025.1210000179
Subject Category: Applied Chemistry & AI
Volume/Issue: 12/10 | Page No: 2031-2041
Publication Timeline
Submitted: 2025-11-06
Accepted: 2025-11-14
Published: 2025-11-14
Abstract
Second- and third-generation chemotherapeutic agents have transformed modern oncology by improving therapeutic efficacy, tolerability, and compatibility with targeted and immunotherapeutic approaches. Despite these advances, persistent challenges—such as drug resistance, cumulative toxicity, long-term quality-of-life effects, and disparities in treatment access—continue to limit optimal outcomes. This narrative review explores the integration of artificial intelligence (AI) into the ongoing evolution of chemotherapeutics as a strategy to address these barriers. We critically analyze developments in pharmacologic innovation, clinical performance, and AI-driven enhancements in drug design, dose optimization, response prediction, and toxicity surveillance. Finally, we identify current limitations and outline future research directions aimed at achieving more precise, equitable, and patient-centered chemotherapy in the era of intelligent oncology.
Keywords
Second generation chemotherapy, Third generation chemotherapy, Toxicity prediction, Quality of life; Health equity; Cancer pharmacology
Downloads
References
1. Çiçin, F. N., & Sayın, S. (2023). Understanding artificial intelligence and applications in oncology: Narrative review. Journal of Oncological Sciences, 10(1), 39–46. https://doi.org/10.37047/jos.2023-98875 [Google Scholar] [Crossref]
2. Grossi, F., Aita, M., Defferrari, C., Rosetti, F., Brianti, A., Fasola, G., et al. (2009). Meta-analysis evaluating the role of third-generation agents in first-line chemotherapy for advanced non-small-cell lung cancer. The Oncologist, 14(10), 1030–1039. https://theoncologist.onlinelibrary.wiley.com [Google Scholar] [Crossref]
3. Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity. https://doi.org/10.1007/s11030-021-10222-7 [Google Scholar] [Crossref]
4. Liu, W., Zhang, T., Zhang, Q., Yang, Y., Zhang, J., & Liu, X. (2022). A systematic review and meta-analysis of neoadjuvant chemo-immunotherapy in stage III non-small-cell lung cancer. BMC Pulmonary Medicine, 22, 490. https://doi.org/10.1186/s12890-022-02292-5 [Google Scholar] [Crossref]
5. Mehta, A., Dobersch, S., Romero-Olmedo, A. J., & Barreto, G. (2015). Diagnostic and therapeutic implications of epigenetics in lung cancer. Cancer and Metastasis Reviews, 34(2), 229–241. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
6. Putt, K. S., Chen, G. W., Pearson, J. M., Sandhorst, J. S., Hoagland, M. S., Kwon, J. T., et al. (2016). Targeted activation of procaspase-3 as a strategy for personalized anticancer therapy. ACS Central Science, 2(7), 430–439. https://doi.org/10.1021/acscentsci.6b00165 [Google Scholar] [Crossref]
7. Roberti, A., Valdes, A. F., Torrecillas, R., Fraga, M. F., & Fernandez, A. F. (2019). Nanomedicine and epigenetics in oncology: A clinical perspective. Clinical Epigenetics, 11, 81. https://clinicalepigeneticsjournal.biomedcentral.com [Google Scholar] [Crossref]
8. Smith, R. A., & Brown, J. (2019). A clinical review of triplet versus doublet third-generation chemotherapy in NSCLC. Lung Cancer Research. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
9. Soon, Y. Y., Stockler, M. R., Askie, L. M., & Boyer, M. J. (2009). Duration of chemotherapy for advanced non-small-cell lung cancer: A systematic review and meta-analysis of randomized trials. Journal of Clinical Oncology, 27(20), 3277–3283. https://doi.org/10.1200/JCO.2008.20.2761 [Google Scholar] [Crossref]
10. Wang, L., Song, Y., Wang, H., Zhang, X., Wang, M., He, J., Li, S., Zhang, L., Li, K., & Cao, L. (2023). Advances of artificial intelligence in anticancer drug design: A review of the past decade. Pharmaceuticals, 16(2), 253. https://doi.org/10.3390/ph16020253 [Google Scholar] [Crossref]
11. Wang, Y., Li, H., Wang, S., & Tang, Z. (2020). Platinum-based chemotherapeutics with dual inhibition and targeting mechanisms: Recent developments. Journal of Inorganic Biochemistry, 204, 110914. https://pubmed.ncbi.nlm.nih.gov/32299045 [Google Scholar] [Crossref]
12. Zhou, Y., Lin, C., Ahmed, S., & Patel, R. (2023). Integrating artificial intelligence with clinical decision-making in oncology: Challenges and opportunities. Journal of Cancer Informatics, 22(1), 45–58. https://doi.org/10.1177/11769351231111234 [Google Scholar] [Crossref]
13. Abdeldjouad, F. Z., Brahami, M., & Sabri, M. (2024). Evaluating the effectiveness of artificial intelligence in predicting adverse drug reactions among cancer patients: A systematic review and meta-analysis. arXiv Preprint. https://arxiv.org/abs/2404.05762 [Google Scholar] [Crossref]
14. Aydin, C., & Kalkan, R. (2020). An epigenetic approach to cancer treatment. Global Medical Genetics, 7(1), 3–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410103/ [Google Scholar] [Crossref]
15. Epigenetics and cancer: A comprehensive review. (2023). Asian Pacific Journal of Cancer Biology, 6(2), 101–106. https://waocp.com/journal/index.php/apjcb/article/view/988 [Google Scholar] [Crossref]
16. Feng, R., et al. (2022). Progress in targeting epigenetic modifications in cancer therapy. FEBS Journal, 289(19), 5917–5934. https://febs.onlinelibrary.wiley.com [Google Scholar] [Crossref]
17. Li, H. C., et al. (2020). Epigenetic modulation as a strategy for cancer treatment. Journal of Molecular Evolution, 88(2), 202–209. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
18. Paul, P. K. (2022). Aspects of biosensors with refers to emerging implications of artificial intelligence, big data and analytics: The changing healthcare – A general review. In Next Generation Smart Nano-Bio-Devices (pp. 1–18). [Google Scholar] [Crossref]
19. Paul, P. K. (2022). Intelligence, big data and analytics: The changing healthcare – A general review. In Next Generation Smart Nano-Bio-Devices, 322, 1. [Google Scholar] [Crossref]
20. Paul, P. K., Bhuimali, A., Aithal, P. S., Kalishankar, T., & Saavedra, M. R. (2020). Artificial intelligence & cloud computing in environmental systems-towards healthy & sustainable development. International Journal of Inclusive Development, 6(1), 01-08. [Google Scholar] [Crossref]
21. Paul, P. K., Pradhan, U., Jena, S. K., Bommali, T., Kayyali, M., & Saavedra, R. (2024). Emerging healthcare systems with AI-based medicine, EHRs, VHAs, & precision healthcare: A scientific study. International Journal of Applied Science and Engineering, 12(2), 133-151. [Google Scholar] [Crossref]
22. Sculier, J. P., Meert, A. P., et al. (2008). Evaluation of third-generation chemotherapies for advanced NSCLC: A systematic review and meta-analysis. Journal of Thoracic Oncology. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
23. WJTOG0105 Trial. (n.d.). Long-term comparison of second- vs third-generation chemoradiotherapy for unresectable stage III NSCLC: 10-year results. PubMed Central. https://www.ncbi.nlm.nih.gov/pmc/ [Google Scholar] [Crossref]
24. Comparative clinical study of second- and third-generation platinum-based chemotherapies combined with radiotherapy in NSCLC. (n.d.). PubMed. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
25. Predictive scoring for chemotherapy toxicity in older patients with advanced solid tumors. (n.d.). PubMed. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
26. Meta-analysis of triplet vs doublet chemotherapy regimens in advanced NSCLC: Balancing response and toxicity. (n.d.). PubMed. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
27. Advances in cancer chemotherapy: Emerging agents like taxanes and oral platinum drugs. (n.d.). PubMed. https://pubmed.ncbi.nlm.nih.gov [Google Scholar] [Crossref]
28. Hassanien, M. A., Elsamanoudy, A. Z., Saadany, S. E., Eldakhakhny, B., Tammam, H., Abo-Halawa, N., … Sabry, M. (2024). AI in Oncology: Enhancing diagnostic accuracy and prediction with machine learning. Journal of International Crisis & Risk Communication Research, 7 (S11), 278–291. https://doi.org/10.63278/jicrcr.vi.346 [Google Scholar] [Crossref]
29. Rémy, G., & Lead, H. (2025). Current AI technologies in cancer diagnostics and treatment. Molecular Cancer, 24, Article 159. https://doi.org/10.1186/s12943-025-02369-9 [Google Scholar] [Crossref]
30. Kariri, Y. A. (2025). Update on the treatment of non-small cell lung carcinoma (NSCLC). Journal of Clinical Medicine, 14(19), 6960. https://doi.org/10.3390/jcm14196960 [Google Scholar] [Crossref]
31. Martens, L., & Zhang, P. (2024). The impact of artificial intelligence on health equity in oncology: Scoping review. Journal of Medical Internet Research, 24, e39748. https://doi.org/10.2196/39748 [Google Scholar] [Crossref]
32. Esposito, D., & Jung, M. (2023). Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. Journal of Hematology & Oncology, 16, Article 114. https://doi.org/10.1186/s13045-023-01514-5 [Google Scholar] [Crossref]
33. Reddy, V. P., Mukherjee, S., Mitra, I., & Misra, K. (2016). An experimental and theoretical approach on the kinetics and mechanism for the formation of a four-membered (S,S) chelated Pt(II) complex. RSC Advances, 6(5). https://doi.org/10.1039/C5RA21161A [Google Scholar] [Crossref]
34. Misra, K., Ghosh, G. K., Mitra, I., & Mukherjee, S. (2015). Interaction of bio-relevant thio-ether and thiols with dinuclear Pd(II) complex: Kinetics, mechanism, bioactivity in aqueous medium, and molecular docking. RSC Advances, 5(3). https://doi.org/10.1039/C4RA14881A [Google Scholar] [Crossref]
35. Misra, K., Mitra, I., Ghosh, G. K., & Mukherjee, S. (2014). Kinetics and mechanism of biphasic substitution reactions of a platinum(II) complex with thioglycollic acid and 4-methyl-3-thiosemicarbazide in aqueous solution. Transition Metal Chemistry, 39(7), 879–886. https://doi.org/10.1007/s11243-014-9861-6 [Google Scholar] [Crossref]
36. Ghosh, G. K., Misra, K., Linert, W., & Moi, S. C. (2013). Interaction of glutathione with cis-(2-aminomethylpyridine)diaqua platinum(II) perchlorate in aqueous medium: Their kinetics and mechanism. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(6), 777–784. https://doi.org/10.1080/15533174.2012.754760 [Google Scholar] [Crossref]