Vitamin B-Complex Mitigates Sub-Chronic Methamphetamine-Induced Oxidative Stress and Neurobehavioral Deficits in Adolescent Wistar Rats

Authors

EKOH Augustine Alobu

Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra State (Nigeria)

NWAKANMA Agnes Akudo

Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

ELEMUO Chukwuebuka Stanley

Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State (Nigeria)

OFOEGO Uzozie Chikere

Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra State (Nigeria)

OJEMENI Gloria Chinenye

Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra State (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.1210000246

Subject Category: Science

Volume/Issue: 12/10 | Page No: 2853-2864

Publication Timeline

Submitted: 2025-10-20

Accepted: 2025-10-26

Published: 2025-11-17

Abstract

Methamphetamine (METH) abuse is a growing public health concern, particularly among Nigerian youths, where it is often consumed for its stimulant and euphoric effects but is associated with severe neurotoxic and psychiatric consequences. This study evaluated the neuroprotective potential of vitamin B-complex against METH-induced cerebellar and cerebral toxicity in adolescent male Wistar rats. Fifty-eight rats weighing 115–128 grams were used, with 28 employed for toxicity testing and 30 randomized into six experimental groups (n = 5). Group A (Negative Control) and received feed and distilled water only. Group B received 8 mg/kg of methamphetamine. Group C and D received 50 mg/kg and 100mg/kg of vitamin B-complex respectively. Group E received a co-administration of 8 mg/kg methamphetamine and 50 mg/kg of vitamin B-complex, while Group F received a co-administration of 8 mg/kg of methamphetamine and 100 mg/kg of vitamin B-complex. Treatments were administered orally for 28 days. Neurobehavioral evaluations (Morris water maze and hanging wire test) were conducted during days 24–28 to capture sub-chronic functional outcomes. At termination, animals were anesthetized, brains harvested, and tissues processed for biochemical and histological analysis. Results showed that METH-treated rats exhibited significant (p < 0.05) weight loss, prolonged escape latencies, impaired motor strength, increased lipid peroxidation, and reduced antioxidant markers (SOD, GSH), with histology revealing neuronal degeneration. In contrast, vitamin B-complex supplementation, alone or co-administered with METH, improved body weight, enhanced behavioral performance, normalized oxidative stress indices, and preserved cerebellar and cerebral histoarchitecture. These findings suggest that vitamin B-complex offers significant protection against METH-induced neurotoxicity, supporting its potential as an adjunctive therapeutic strategy for substance-related neurological disorders.

Keywords

Adolescent, Methamphetamine, Vitamin B-complex

Downloads

References

1. Yang, X., Wang, Y., Li, Q., Zhong, S., & Li, R. (2018). Methamphetamine and the brain: Neurotoxicity and implications for neuropsychiatric disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 85, 291–299. https://doi.org/10.1016/j.pnpbp.2018.04.005 [Google Scholar] [Crossref]

2. Paulus, M. P., & Stewart, J. L. (2020). Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: A review. JAMA Psychiatry, 77(9), 959–966. https://doi.org/10.1001/jamapsychiatry.2020.0246 [Google Scholar] [Crossref]

3. Jones, A., Smith, R., & Taylor, M. (2021). Methamphetamine exposure and neurodegeneration in adolescent rodents. Brain Research Bulletin, 171, 67–75. https://doi.org/10.1016/j.brainresbull.2021.03.004 [Google Scholar] [Crossref]

4. National Institute on Drug Abuse. (2024). Methamphetamine. Retrieved September 19, 2025, from https://nida.nih.gov/research-topics/methamphetamine [Google Scholar] [Crossref]

5. Fiorentini, A., Cantù, F., Crisanti, C., Cereda, G., Oldani, L., & Brambilla, P. (2021). Substance-induced psychoses: An updated literature review. Frontiers in Psychiatry, 12, 694863. https://doi.org/10.3389/fpsyt.2021.694863 [Google Scholar] [Crossref]

6. Jon Stoessl, A. (2011). Neuroimaging in Parkinson’s disease. Neurotherapeutics, 8(1), 72–81. https://doi.org/10.1007/s13311-010-0007-z [Google Scholar] [Crossref]

7. Siefried, K. J., Veness, B. G., & McGregor, I. S. (2020). Treatments for amphetamine-type stimulant withdrawal and dependence: Systematic review and clinical overview. CNS Drugs, 34(5), 473–492. https://doi.org/10.1007/s40263-020-00711-x [Google Scholar] [Crossref]

8. Ares-Santos, S., Granado, N., & Moratalla, R. (2013). Role of dopamine receptors in the neurotoxicity of methamphetamine. Journal of Internal Medicine, 273(5), 437–453. https://doi.org/10.1111/joim.12049 [Google Scholar] [Crossref]

9. Cruickshank, C. C., & Dyer, K. R. (2009). A review of the clinical pharmacology of methamphetamine. Addiction, 104(7), 1085–1099. https://doi.org/10.1111/j.1360-0443.2009.02564.x [Google Scholar] [Crossref]

10. Eltony, S. A. (2016). Histological study on the protective role of vitamin B complex on the cerebellum of diabetic rat. Tissue and Cell, 48(4), 283–296. https://doi.org/10.1016/j.tice.2016.06.009 [Google Scholar] [Crossref]

11. Morris, M. S. (2003). Homocysteine and B-vitamin status in relation to cognitive decline. Proceedings of the Nutrition Society, 62(2), 403–408. https://doi.org/10.1079/PNS2003264 [Google Scholar] [Crossref]

12. Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068 [Google Scholar] [Crossref]

13. Moshiri, M., Hosseiniyan, S. M., Moallem, S. A., Hadizadeh, F., Jafarian, A. H., Ghadiri, A., Hoseini, T., Seifi, M., & Etemad, L. (2018). The effects of vitamin B12 on the brain damages caused by methamphetamine in mice. Iranian Journal of Basic Medical Sciences, 21(4), 434–438. https://doi.org/10.22038/IJBMS.2018.23362.5897 [Google Scholar] [Crossref]

14. Nwakanma, A. A., Ekong, M. B., Elemuo, C. O., Eluwa, M. A., Okafor, I. J., & Idaguko, A. C. (2016). Histological and immunohistochemical assessment of the cerebral cortex following potassium bromate intoxication in Wistar rats. Nigerian Journal of Neuroscience, 7(2), 48–52. [Google Scholar] [Crossref]

15. National Institutes of Health. (2011). Guide for the care and use of laboratory animals (8th ed.). The National Academies Press. [Google Scholar] [Crossref]

16. Madden, L. J., Flynn, C. T., Zandonatti, M. A., May, M., Parsons, L. H., Katner, S. N., Henriksen, S. J., & Fox, H. S. (2005). Modeling human methamphetamine exposure in nonhuman primates: Chronic dosing in the rhesus macaque leads to behavioral and physiological abnormalities. Neuropsychopharmacology, 30(2), 350–359. https://doi.org/10.1038/sj.npp.1300575 [Google Scholar] [Crossref]

17. Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275–287. https://doi.org/10.1007/BF01234480 [Google Scholar] [Crossref]

18. Deora, P. S., Mishra, C. K., Mavani, P., Asha, R., Shrivastava, B., & Rajesh, K. N. (2010). Effective alternative methods of LD50 help to save number of experimental animals. Journal of Chemical and Pharmaceutical Research, 2(6), 450–453. [Google Scholar] [Crossref]

19. Hoffman, E., & Winder, S. J. (2016). A modified wire hanging apparatus for small animal muscle function testing. PLoS Currents, 8, ecurrents.md.1e2bec4e78697b7b0ff80ea25a1d38be. https://doi.org/10.1371/currents.md.1e2bec4e78697b7b0ff80ea25a1d38be [Google Scholar] [Crossref]

20. Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47–60. [Google Scholar] [Crossref]

21. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 [Google Scholar] [Crossref]

22. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6 [Google Scholar] [Crossref]

23. Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132. [Google Scholar] [Crossref]

24. Suvarna, S. K., Layton, C., & Bancroft, J. D. (2019). Bancroft’s theory and practice of histological techniques (8th ed.). Elsevier. [Google Scholar] [Crossref]

25. Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques (6th ed.). Churchill Livingstone Elsevier. [Google Scholar] [Crossref]

26. Kiernan, J. A. (1999). Histological and histochemical methods: Theory and practice (3rd ed.). Butterworth-Heinemann. [Google Scholar] [Crossref]

27. Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). Academic Press. [Google Scholar] [Crossref]

28. Golsookhdan, F. (2021). Methamphetamine-induced oxidative stress and neurotoxicity: Mechanistic insights. Neurotoxicology, 83, 45–55. https://doi.org/10.1016/j.neuro.2020.12.009 [Google Scholar] [Crossref]

29. West, K. S., Lawson, V., Swanson, A. M., Dunigan, A. I., & Roseberry, A. G. (2019). Amphetamine Dose-Dependently Decreases and Increases Binge Intake of Fat and Sucrose Independent of Sex. Obesity (Silver Spring, Md.), 27(11), 1874–1882. https://doi.org/10.1002/oby.22636 [Google Scholar] [Crossref]

30. Kuczenski, R., Everall, I. P., Crews, L., Adame, A., Grant, I., & Masliah, E. (2007). Escalating dose–multiple binge methamphetamine exposure results in degeneration of the neocortex and limbic system in the rat. Experimental Neurology, 207(1), 42–51. https://doi.org/10.1016/j.expneurol.2007.05.023 [Google Scholar] [Crossref]

31. Thompson, P. M., Hayashi, K. M., Simon, S. L., Geaga, J. A., Hong, M. S., Sui, Y., Lee, J. Y., Toga, A. W., Ling, W., & London, E. D. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. Journal of Neuroscience, 24(26), 6028–6036. https://doi.org/10.1523/JNEUROSCI.0713-04.2004 [Google Scholar] [Crossref]

32. Shrestha, P., Katila, N., Lee, S., Seo, J. H., Jeong, J. H., & Yook, S. (2022). Methamphetamine-induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomedicine & Pharmacotherapy, 154, 113591. https://doi.org/10.1016/j.biopha.2022.113591 [Google Scholar] [Crossref]

33. Nickolas, T. L. (2008). Methamphetamine and dopaminergic terminal degeneration. Annals of the New York Academy of Sciences, 1139(1), 175–189. https://doi.org/10.1196/annals.1432.037 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles