Geophysical Investigation for Marl Exploration Using Vertical Electrical Sounding in Akpokponke Ibii Afikpo Southeast Nigeria
Authors
Physics (Nigeria)
Department of Management, University of Hertsfordshire, Hatfield (Nigeria)
Department of Geosciences, Federal University of Technology Owerri, Imo State (Nigeria)
Department of Geosciences, University of Calgary, Alberta (Nigeria)
Mathematics (Nigeria)
Human Kinetics and Sports Science Departments, Alvan Ikoku Federal University of Education Owerri, Imo State (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.120800192
Subject Category: Geophysics
Volume/Issue: 12/8 | Page No: 2138-2148
Publication Timeline
Submitted: 2025-08-07
Accepted: 2025-08-25
Published: 2025-09-19
Abstract
This study employs Vertical Electrical Sounding (VES) to investigate subsurface lithology with emphasis on identifying marl deposits in the study area. Resistivity profiles from five locations reveal diverse geological formations, including shallow weathered zones and deeper high-resistivity layers consistent with dense marl and sandstone. Results indicate that marl-rich formations occur at extractable depths. Overlying clay and shale horizons, identified as low-resistivity layers, may act as protective aquitards. These findings demonstrate the effectiveness of VES in delineating marl deposits and assessing their spatial distribution. The integration of recent advances in geophysical surveying and resistivity inversion enhances the accuracy of locating economically viable marl deposits, supporting sustainable extraction and land-use planning in sedimentary environments
Keywords
Vertical Electrical Sounding, Marl Exploration, Resistivity, Subsurface Lithology, Sedimentary Deposits, Geophysical Survey, Resource Assessment, Hydrogeology
Downloads
References
1. Adegoke, O. A., Johnson, T. A., & Oluwadare, O. S. (2022). Sedimentology and stratigraphy of the Amasiri Sandstone and Ezeaku Formation in southeastern Nigeria. Journal of African Earth Sciences, 189, 104585. https://doi.org/10.1016/j.jafrearsci.2022.104585 [Google Scholar] [Crossref]
2. Ajakaiye, D. E., Abayomi, A. O., & Oladipo, O. D. (1994). Application of electrical resistivity methods in mineral exploration in Nigeria. Nigerian Journal of Mining and Geology, 31(2), 115–124. [Google Scholar] [Crossref]
3. Akinluyi, A. O., Oladipo, O. D., & Akinluyi, O. A. (2020). Geophysical investigation of marl deposits for industrial applications in southeastern Nigeria. Journal of Geophysical Research, 25(3), 45–58. [Google Scholar] [Crossref]
4. Akinluyi, A. O., Oladipo, O. D., & Eze, C. C. (2021). Differentiation of lithologies in sedimentary basins using electrical resistivity techniques: A case study from southeastern Nigeria. Geophysical Research Letters, 48(8), e2020GL089123. https://doi.org/10.1029/2020GL089123 [Google Scholar] [Crossref]
5. Dahlin, T., & Zhou, B. (2004). The influence of layered earth models on the interpretation of resistivity data. Geophysics, 69(4), 1141–1150. [Google Scholar] [Crossref]
6. Enesi, R. O., Dyck, M., Chang, S., Thilakarathna, M. S., Fan, X., Strelkov, S., & Gorim, L. Y. (2023). Liming remediates soil acidity and improves crop yield and profitability—A meta-analysis. Frontiers in Agronomy, 5, 1194896. https://doi.org/10.3389/fagro.2023.1194896 [Google Scholar] [Crossref]
7. Eze, C. C., Nwankwo, O. N., & Chukwu, B. C. (2022). Geophysical evaluation of marl deposits for construction in southeastern Nigeria. Nigerian Journal of Geology, 56 (2), 180–195. [Google Scholar] [Crossref]
8. Eze, C. C., Nwankwo, O. N., & Onyekachi, A. C. (2018). Stratigraphy and sedimentology of the Afikpo Basin, southeastern Nigeria. Journal of African Earth Sciences, 145, 151–165. [Google Scholar] [Crossref]
9. Eze, C. L., Nwachukwu, M. C., & Ijeoma, O. (2020). Structural features and tectonic history of the Ezeaku Formation in southeastern Nigeria. African Geosciences Review, 27 (2), 153–167. https://doi.org/10.1017/S1819720520000110 [Google Scholar] [Crossref]
10. Kumar, S., & Patel, A. (2024). Resistivity techniques in hydrogeological investigations of sedimentary basins. Hydrogeology Journal, 32(4), 789–805. [Google Scholar] [Crossref]
11. Li, H., Zhang, Y., & Chen, J. (2023). Advances in seismic imaging techniques for subsurface exploration. Earth-Science Reviews, 241, 104005. https://doi.org/10.1016/j.earscirev.2023.104005 [Google Scholar] [Crossref]
12. Lee, H., Park, J., & Choi, S. (2024). Shallow weathering profiles in sedimentary terrains: Implications for geotechnical engineering. Engineering Geology. (Forthcoming). [Google Scholar] [Crossref]
13. Loke, M. H. (2013). Tutorial: 2-D and 3-D electrical imaging surveys. Geophysics, 78(6), E93–E108. [Google Scholar] [Crossref]
14. Loke, M. H., et al. (2015). i2w software for resistivity data inversion and interpretation (User manual). [Google Scholar] [Crossref]
15. Nwachukwu, K. C., & Okezie, N. C. (2022). Archaeological and geological implications of rock shelters in the Ezeaku Formation. Nigerian Journal of Archaeology, 18(1), 45–60. [Google Scholar] [Crossref]
16. Nwankwo, O. N., Obi, E. I., & Chukwu, B. C. (2019). Geophysical assessment of aquifer potentials in Afikpo, Nigeria. Environmental & Engineering Geoscience, 25(4), 339–352. [Google Scholar] [Crossref]
17. Ofoegbu, C. O. (1984). Geophysical evidence for the presence of a basin boundary fault along the Benue Trough, Nigeria. Geophysical Journal International, 77(2), 341–353. [Google Scholar] [Crossref]
18. Ojo, A. O., Oladipo, T. A., & Adeyemi, A. O. (2021). Paleoenvironmental reconstruction of the Turonian ammonite-bearing limestones in southeastern Nigeria. International Journal of Sedimentology and Stratigraphy, 35(3), 247–259. https://doi.org/10.1016/j.ijss.2021.02.005 [Google Scholar] [Crossref]
19. Ojo, O. O., Akinluyi, A. O., & Oladipo, O. D. (2021). Stratigraphy and depositional environments of the Afikpo Basin, Nigeria: Recent geophysical insights. African Journal of Earth Sciences, 12(3), 245–259. [Google Scholar] [Crossref]
20. Ojo, O., & Adeyemi, A. (2024). Groundwater potential assessment using geophysical surveys in semi-arid regions. Water Resources Management, 38(3), 543–560. [Google Scholar] [Crossref]
21. Olatunji, O. A., Akinluyi, A. O., & Oladipo, O. D. (2021). Advances in electrical resistivity imaging for geological and environmental investigations in Nigeria. Exploration Geophysics, 52(2), 107–124. [Google Scholar] [Crossref]
22. Olatunji, O. J., Oyebanji, O. O., & Ojo, S. O. (2020). Assessment of marl deposits for construction and industrial purposes in southwestern Nigeria using geophysical and geotechnical techniques. Geotechnical and Geological Engineering, 38, 437–454. https://doi.org/10.1007/s10706-020-01336-1 [Google Scholar] [Crossref]
23. Olaleye, J. A., & Adeyemi, A. (2024). Integration of geophysical and remote sensing data for subsurface mapping in Nigeria. Remote Sensing in Environmental Management, 15(1), 34–52. [Google Scholar] [Crossref]
24. Smith, L., et al. (2023). Recent developments in electrical resistivity imaging for geological mapping. Geophysical Research Letters, 50(2), e2022GL099876. [Google Scholar] [Crossref]
25. Smith, R., & Johnson, L. (2022). Human Performance Optimization in Field Geoscience Operations. Safety Science, 147, 105569. [Google Scholar] [Crossref]
26. Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1990). Applied Geophysics (2nd ed.). Cambridge University Press. [Google Scholar] [Crossref]
27. Zhang, Y., Liu, Q., & Wang, D. (2024). Integration of resistivity and remote sensing for subsurface lithology mapping. Remote Sensing in Environmental Management, 15(1), 34–52. [Google Scholar] [Crossref]