Can Algicidal Bacteria be the Solution to Successfully Manage Freshwater Algal Blooms?

Authors

Wendy Wang

Department of Research Project Qualifications, Shenzhen College of International Education, 518040, Shenzhen (China)

Alirio Melendez Romero

Department of Research Project Qualifications, Shenzhen College of International Education, 518040, Shenzhen (China)

Article Information

DOI: 10.51244/IJRSI.2025.1210000309

Subject Category: Biology

Volume/Issue: 12/10 | Page No: 3568-3579

Publication Timeline

Submitted: 2025-11-01

Accepted: 2025-11-08

Published: 2025-11-21

Abstract

Eutrophication is a phenomenon that can occur in any water body, caused by an excessive input of nutrients, particularly nitrogen and phosphorus. This causes the rapid growth of primary producers (usually an algae bloom), which depletes other nutrients in water and can cause disruption of the local ecosystem. The algal bloom, pollute drinking water, wildlife water reservoirs, and collapse ecosystems. Eutrophication has increased in recent years due to anthropogenic climate change and increased nutrient loading from agriculture and industrial wastewater. In freshwater, the most common bacterium causing algal blooms are Cyanobacteria, such as Microcystis. Current management strategies have focused on reducing phosphorus, however in eutrophic freshwater, harmful algal blooms are mostly the result of Microcystis, a genus of cyanobacteria that is unable to fix its own nitrogen. Thus, managing aquatic nitrogen will become crucial in eutrophic freshwater bodies. A variety of physical, chemical, and biological methods have been proposed and implemented to reduce algal blooms at all stages, however each method has its limitations. A particularly novel line of management is microbial management, taking advantage of the high specificity and lower cost of microbial mediation. This paper review the current understanding of eutrophication-related algal blooms and their effects, discuss current management techniques for freshwater algal blooms, and evaluate the validity of using algicidal bacteria to combat Microcystis algal blooms.

Keywords

Algicidal, Bacteria, Freshwater, Algal Blooms

Downloads

References

1. Atta, K.P.T., Maree, J.P., Onyango, M.S., Mpenyana-Monyatsi, L. and Mujuru, M. (2020). Chemical phosphate removal from Hartbeespoort Dam water, South Africa. Water SA, [online] 46(4), pp.610–614. doi:https://doi.org/10.17159/wsa/2020.v46.i4.9074. [Google Scholar] [Crossref]

2. B.-M. Vought, L., Pinay, G., Fuglsang, A. and Ruffinoni, C. (1995). Structure and function of buffer strips from a water quality perspective in agricultural landscapes. Landscape and Urban Planning, 31(1-3), pp.323–331. doi:https://doi.org/10.1016/0169-2046(94)01057-f. [Google Scholar] [Crossref]

3. Boumann, H.A., Pieter Stroeve, Longo, M.L., Poolman, B., Kuiper, J.M., Hopmans, E.C., Jetten, M., Damsté, J. and Schouten, S. (2009). Biophysical properties of membrane lipids of anammox bacteria: II. Impact of temperature and bacteriohopanoids. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1788(7), pp.1452–1457. [Google Scholar] [Crossref]

4. doi:https://doi.org/10.1016/j.bbamem.2009.04.005. [Google Scholar] [Crossref]

5. Chen, C., Pan, G., Shi, W., Xu, F., Techtmann, S.M., Pfiffner, S.M. and Hazen, T.C. (2018). Clay Flocculation Effect on Microbial Community Composition in Water and Sediment. Frontiers in Environmental Science, 6. doi:https://doi.org/10.3389/fenvs.2018.00060. [Google Scholar] [Crossref]

6. Dehghani, M.H. (2016). Removal of cyanobacterial and algal cells from water by ultrasonic waves — A review. Journal of Molecular Liquids, 222(0167-7322), pp.1109–1114. doi: https:// doi .org/10.1016/j.molliq.2016.08.010. [Google Scholar] [Crossref]

7. Denchak, M. and Sturm, M. (2019). Freshwater Harmful Algal Blooms 101. [online] NRDC. Available at: https://www.nrdc.org/stories/freshwater-harmful-algal-blooms-101. [Google Scholar] [Crossref]

8. Diaz, R.J. and Rosenberg, R. (2008). Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321(5891), pp.926–929. doi:https://doi.org/10.1126/science.1156401. [Google Scholar] [Crossref]

9. El-Refaie, G. (2010). Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt. Ain Shams Engineering Journal, 1(1), pp.1–9. [Google Scholar] [Crossref]

10. doi:https://doi.org/10.1016/j.asej.2010.09.001. [Google Scholar] [Crossref]

11. Fan, J., Hobson, P., Ho, L., Daly, R. and Brookes, J.D. (2014). The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria. Journal of Hazardous Materials, 264(0304-3894), pp.313–322. [Google Scholar] [Crossref]

12. doi:https://doi.org/10.1016/j.jhazmat.2013.10.059. [Google Scholar] [Crossref]

13. Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A. and Paerl, H.W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54(1568-9883), pp.4–20. [Google Scholar] [Crossref]

14. doi:https://doi.org/10.1016/j.hal.2015.12.007. [Google Scholar] [Crossref]

15. Jiang, F., Preisendanz, H.E., Veith, T.L., Cibin, R. and Drohan, P.J. (2020). Riparian buffer effectiveness as a function of buffer design and input loads. Journal of Environmental Quality, 49(6), pp.1599–1611. doi:https://doi.org/10.1002/jeq2.20149. [Google Scholar] [Crossref]

16. Kartal, B., de Almeida, N.M., Maalcke, W.J., Op den Camp, H.J.M., Jetten, M.S.M. and Keltjens, J.T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 37(3), pp.428–461. doi:https://doi.org/10.1111/1574-6976.12014. [Google Scholar] [Crossref]

17. Kim, W., Kim, M. and Park, W. (2023). Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. Journal of hazardous materials, [online] 448. [Google Scholar] [Crossref]

18. doi:https://doi.org/10.1016/j.jhazmat.2023.130932. [Google Scholar] [Crossref]

19. Kong, Y., Wang, Y., Miao, L., Mo, S., Li, J. and Zheng, X. (2022). Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms, [online] 10(6), p.1136. [Google Scholar] [Crossref]

20. doi:https://doi.org/10.3390/microorganisms10061136. [Google Scholar] [Crossref]

21. Kuenen, J.G. (2008). Anammox bacteria: from discovery to application. Nature Reviews Microbiology, [online] 6(4), pp.320–326. doi:https://doi.org/10.1038/nrmicro1857. [Google Scholar] [Crossref]

22. Le, V.V., Ko, S.-R., Kang, M., Lee, S.-A., Oh, H.-M. and Ahn, C.-Y. (2022). Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects. [Google Scholar] [Crossref]

23. Environmental Pollution, 302(0269-7491), p.119079. doi:https://doi.org/ 10.1016/j.envpol .2022. 119079. [Google Scholar] [Crossref]

24. Lone, Y., Koiri, R.K. and Bhide, M. (2015). An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicology Reports, 2(2214-7500), pp. 289–296. doi: https://doi.org/10.1016/j.toxrep.2015.01.008. [Google Scholar] [Crossref]

25. Massey, I.Y. and Yang, F. (2020). A Mini Review on Microcystins and Bacterial Degradation. Toxins, 12(4), p.268. doi:https://doi.org/10.3390/toxins12040268. [Google Scholar] [Crossref]

26. Meghan Bowman (2023). NOAA reports Gulf of Mexico’s ‘dead zone ’is below average this year. [online] WUSF Public Media. Available at: [Google Scholar] [Crossref]

27. https://wusfnews.wusf.usf.edu/environment/2023-08-07/noaa-reports-gulf-of-mexicos-dead-zone-isbelow-average-this-year. [Google Scholar] [Crossref]

28. NCCOS Coastal Science Website. (2011). Congressional Interest in Harmful Algae and Dead Zone Bill Prompts Hearing. [online] Available at: https://coastalscience.noaa.gov/news/cscor-provides-testimonyto-congress-in-support-of-harmful-algae-and-hypoxialaw/#:~:text=Congressional%20Interest%20in%20Harmful%20Algae%20and%20Dead%20Zone%20Bil l%20Prompts%20Hearing. [Google Scholar] [Crossref]

29. NOAA (2016). What is a harmful algal bloom? | National Oceanic and Atmospheric Administration. [online] Noaa.gov. Available at: https://www.noaa.gov/what-is-harmful-algal-bloom. [Google Scholar] [Crossref]

30. Orihel, D.M., Baulch, H.M., Casson, N.J., North, R.L., Parsons, C.T., Seckar, D.C.M. and Venkiteswaran, J.J. (2017). Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), pp.2005–2029. doi:https://doi.org/10.1139/cjfas-2016-0500. [Google Scholar] [Crossref]

31. Paerl, H.W., Scott, J.T., McCarthy, M.J., Newell, S.E., Gardner, W.S., Havens, K.E., Hoffman, D.K., Wilhelm, S.W. and Wurtsbaugh, W.A. (2016). It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environmental Science & Technology, 50(20), pp.10805–10813. doi: https://doi.org/ 10 .1021/ acs.est.6b02575. [Google Scholar] [Crossref]

32. Pimentel, J.S.M. and Giani, A. (2014). Microcystin Production and Regulation under Nutrient Stress Conditions in Toxic Microcystis Strains. Applied and Environmental Microbiology, [online] 80(18), pp.5836–5843. doi:https://doi.org/10.1128/AEM.01009-14. [Google Scholar] [Crossref]

33. Reed, J. (2007). Corn boom could expand ‘dead zone ’in Gulf. [online] NBC News. Available at: https://www.nbcnews.com/id/wbna22301669 [Accessed 23 Oct. 2023]. [Google Scholar] [Crossref]

34. Rutherford, S.T. and Bassler, B.L. (2012). Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harbor Perspectives in Medicine, 2(11), pp.a012427–a012427. doi:https://doi.org/10.1101/cshperspect.a012427. [Google Scholar] [Crossref]

35. Rzymski, P., Klimaszyk, P., Jurczak, T. and Poniedziałek, B. (2020). Oxidative Stress, Programmed Cell Death and Microcystin Release in Microcystis aeruginosa in Response to Daphnia Grazers. Frontiers in Microbiology, 11(1664-302X). doi:https://doi.org/10.3389/fmicb.2020.01201. [Google Scholar] [Crossref]

36. Schuurmans, J.M., Brinkmann, B.W., Makower, A.K., Dittmann, E., Huisman, J. and Matthijs, H.C.P. (2018). Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria. Harmful Algae, 78(47-55), pp.47–55.doi:https://doi.org/10.1016/j.hal.2018.07.008. [Google Scholar] [Crossref]

37. Sergi, E., Orfanakis, M., Dimitriadi, A., Christou, M., Zachopoulou, A., Kourkouta, C., Printzi, A., Zervou, S.-K., Makridis, P., Hiskia, A. and Koumoundouros, G. (2022). Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish. Aquatic Toxicology, 243(0166-445X), p.106074. doi: https:// doi. org/ 10.1016/j.aquatox.2022.106074. [Google Scholar] [Crossref]

38. Shen, M., Li, Q., Ren, M., Lin, Y., Wang, J., Chen, L., Li, T. and Zhao, J. (2019). Trophic Status Is Associated With Community Structure and Metabolic Potential of Planktonic Microbiota in Plateau Lakes. Frontiers in Microbiology, 10(Volume 10 - 2019). doi:https:// doi.org/ 10.3389/ fmicb .2019.02560. [Google Scholar] [Crossref]

39. Stauffer, R. and Lee, G.F. (1973). The Role of Thermocline Migration in Regulating Algal Blooms. In: Modeling the Eutrophication Process. [online] Modeling the Eutrophication Process. Logan: Utah State University, pp.73–82. Available at: [Google Scholar] [Crossref]

40. https://www.researchgate.net/publication/301780503_The_Role_of_Thermocline_Migration_in_Regulat ing_Algal_Blooms [Accessed 13 Nov. 2023]. [Google Scholar] [Crossref]

41. US EPA, O. (2018). Health Effects from Cyanotoxins. [online] www.epa.gov. Available at: https:// www.epa.gov/cyanohabs/health-effects-cyanotoxins. [Google Scholar] [Crossref]

42. Visser, P., Ibelings, B., Van deer Veer, B., Koedood, J. and Mur, R. (1996). Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis [Google Scholar] [Crossref]

43. in Lake Nieuwe Meer, the Netherlands. Freshwater Biology, 36(2), pp.435–450. doi:https:// doi.org/10.1046/j.1365-2427.1996.00093.x. [Google Scholar] [Crossref]

44. Wang, S., Ding, P., Lu, S., Wu, P., Wei, X., Huang, R. and Kai, T. (2021). Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in Microcystis aeruginosa that mimics quorum sensing. Ecotoxicology and Environmental Safety, 220(01476513), p.112330. doi:https://doi.org/10.1016/j.ecoenv.2021.112330. [Google Scholar] [Crossref]

45. Wu, S., Wu, Z., Liang, Z., Liu, Y. and Wang, Y. (2019). Denitrification and the controlling factors in Yunnan Plateau Lakes (China): Exploring the role of enhanced internal nitrogen cycling by algal blooms. Journal of Environmental Sciences, [online] 76(1001-0742), pp. 349–358. doi: https:// doi.org/10.1016/j.jes.2018.05.028. [Google Scholar] [Crossref]

46. Xue, Y., Zheng, Y., Chen, H., Yang, J., Liu, M., Liu, L., Huang, B. and Yang, J. (2017). Cyanobacterial bloom significantly boosts hypolimnelic anammox bacterial abundance in a subtropical stratified reservoir. FEMS Microbiology Ecology, [online] 93(10). doi:https:// doi.org/10.1093/femsec/fix118. [Google Scholar] [Crossref]

47. Yang, X., Wu, X., Hao, H. and He, Z. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University SCIENCE B, [online]9(3), pp.197–209. doi:https://d oi.org/ 10.1631/jzus.b0710626. [Google Scholar] [Crossref]

48. Zeng, G., Zhang, R., Liang, D., Wang, F., Han, Y., Luo, Y., Gao, P., Wang, Q., Wang, Q., Yu, C., Jin, L. and Sun, D. (2023). Comparison of the Advantages and Disadvantages of Algae Removal Technology and Its Development Status. Water, [online] 15(6), p.1104. doi:https:// doi.org/10.3390/w15061104. [Google Scholar] [Crossref]

49. Zhai, C., Zhang, P., Shen, F., Zhou, C. and Liu, C. (2012). Does Microcystis aeruginosa have quorum sensing? FEMS Microbiology Letters, 336(1), pp.38–44. doi:https:// doi.org/ 10.1111/j.15746968.2012.02650.x. [Google Scholar] [Crossref]

50. Zhang, H., Sekar, R. and Visser, P.M. (2020). Editorial: Microbial Ecology in Reservoirs and Lakes. [Google Scholar] [Crossref]

51. Frontiers in Microbiology, 11(Volume 11 - 2020). [Google Scholar] [Crossref]

52. doi:https://doi.org/10.3389/fmicb.2020.01348. [Google Scholar] [Crossref]

53. Zhang, Y., Chen, D., Zhang, N., Liu, F., Luo, X., Li, Q., Li, C. and Huang, X. (2021). Transcriptional Analysis of Microcystis aeruginosa Co-Cultured with Algicidal Bacteria Brevibacillus laterosporus. International Journal of Environmental Research and Public Health, [online] 18(16), pp.8615–8615. doi:https://doi.org/10.3390/ijerph18168615. [Google Scholar] [Crossref]

54. Zhao, G., Yang, H., Li, L., Zhang, H., Xu, R. and Yuan, H. (2022). Selection and characterization of plantderived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism. Harmful Algae, 117(1568-9883), pp.102272–102272. doi:https://doi.org/ 10.1016/ j.hal.2022.102272. [Google Scholar] [Crossref]

55. Zhou, Q., Wang, Y., Xuezheng, W., Liu Haiqin, Zhang, Y. and Zhang, Z. (2022). The Effect of Algicidal and Denitrifying Bacteria on the Vertical Distribution of Cyanobacteria and Nutrients. Water, [online] 14(13), p.2129. doi:https://doi.org/10.3390/w14132129 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles