Overview of Use of PID, Fuzzy Logic, and Model Predictive Control in Autonomous Vehicle Systems

Authors

H.G.E.M.R.S.J. Ekanayake

Department of Engineering Technology, Faculty of Technology, Sabaragamuwa University of Sri Lanka (Sri Lanka)

P.A.I.S. Abejeewa

Center for Nano Device Fabrication and Characterization (CNFC), Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140 (Sri Lanka)

W.A.L. Priyankara

Center for Nano Device Fabrication and Characterization (CNFC), Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140 (Sri Lanka)

Ashan Induranga

Center for Nano Device Fabrication and Characterization (CNFC), Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140 (Sri Lanka)

Article Information

DOI: 10.51244/IJRSI.2025.1210000318

Subject Category: Autonomous Vehicles' Control System

Volume/Issue: 12/10 | Page No: 3685-3697

Publication Timeline

Submitted: 2025-10-02

Accepted: 2025-10-08

Published: 2025-11-21

Abstract

This review article provides a brief overview of the applications of Proportional – Integral – Derivative (PID), Fuzzy Logic, and Model Predictive Control (MPC) technologies in the autonomous vehicles industry. PID is a popular control method used in various industries because of its simplicity and tuning methods. PID control serves as a fundamental building block for many control systems due to its simplicity. Fuzzy Logic control offers flexibility and robustness to handle uncertainties. MPC provides advanced predictive control while working as a cutting-edge control strategy. This paper tried to develop an overview of the use of the above-mentioned technologies in autonomous vehicle speed control, steering control, path following, stability control, and energy management in the recent past, while providing a brief introduction to the controlling mechanisms along with their history.

Keywords

Autonomous, Fuzzy logic, MPC, PID, Process control, Robot control

Downloads

References

1. S. Bennett, “The Past of PID Controllers,” IFAC Proc. Vol., vol. 33, no. 4, pp. 1–11, 2018, doi: 10.1016/S1474-6670(17)38214-9. [Google Scholar] [Crossref]

2. S. Bennett and S. Bennett, “Development of the PID Controller,” no. January 1994, 2017, doi: 10.1109/37.248006. [Google Scholar] [Crossref]

3. “PID control system analysis, design, and technology | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Nov. 06, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/1453566 [Google Scholar] [Crossref]

4. L. Objectives, “1 PID Control Technology,” pp. 1–2. [Google Scholar] [Crossref]

5. C. W. Liu and S. C. Kang, “A video-enabled dynamic site planner,” Comput. Civ. Build. Eng. - Proc. 2014 Int. Conf. Comput. Civ. Build. Eng., vol. 353, pp. 1562–1569, 2014, doi: 10.1061/9780784413616.194. [Google Scholar] [Crossref]

6. Y. Dote, “Introduction to fuzzy logic,” IECON Proc. (Industrial Electron. Conf., vol. 1, no. June, pp. 50–56, 1995, doi: 10.2298/fuee0502319m. [Google Scholar] [Crossref]

7. M. J. Patyra, J. L. Grantner, and K. Koster, “Digital fuzzy logic controller: design and implementation,” IEEE Trans. Fuzzy Syst., vol. 4, no. 4, pp. 439–459, 1996, doi: 10.1109/91.544304. [Google Scholar] [Crossref]

8. J. M. Mendel, “Fuzzy Logic Systems for Engineering: A Tutorial,” Proc. IEEE, vol. 83, no. 3, pp. 345–377, 1995, doi: 10.1109/5.364485. [Google Scholar] [Crossref]

9. J. M. ; Rodríguez-Valderrama et al., “A Review on Applications of Fuzzy Logic Control for Refrigeration Systems,” Appl. Sci. 2022, Vol. 12, Page 1302, vol. 12, no. 3, p. 1302, Jan. 2022, doi: 10.3390/APP12031302. [Google Scholar] [Crossref]

10. L. Li, J. Li, and S. Zhang, “Review article: State-of-The-Art trajectory tracking of autonomous vehicles,” Mech. Sci., vol. 12, no. 1, pp. 419–432, Apr. 2021, doi: 10.5194/MS-12-419-2021. [Google Scholar] [Crossref]

11. M. Samuel, K. Yahya, H. Attar, A. Amer, M. Mohamed, and T. A. Badmos, “Evaluating the Performance of Fuzzy-PID Control for Lane Recognition and Lane-Keeping in Vehicle Simulations,” Electron. 2023, Vol. 12, Page 724, vol. 12, no. 3, p. 724, Feb. 2023, doi: 10.3390/ELECTRONICS12030724. [Google Scholar] [Crossref]

12. R. Saran and S. Praveen, “Steering Control in Electric Power Steering Autonomous Vehicle Using Fuzzy Logic Control and Pi Control,” Int. J. Eng. Res. Technol., vol. 12, no. 2, May 2024, doi: 10.17577/IJERTCONV12IS02054. [Google Scholar] [Crossref]

13. C. E. García, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice—A survey,” Automatica, vol. 25, no. 3, pp. 335–348, May 1989, doi: 10.1016/0005-1098(89)90002-2. [Google Scholar] [Crossref]

14. R. M. C. De Keyser, P. G. A. Van de Velde, and F. A. G. Dumortier, “A comparative study of self-adaptive long-range predictive control methods,” Automatica, vol. 24, no. 2, pp. 149–163, Mar. 1988, doi: 10.1016/0005-1098(88)90024-6. [Google Scholar] [Crossref]

15. “6 Constrained Receding Horizon Controls 6.1,” Constraints, pp. 4–5. [Google Scholar] [Crossref]

16. “Algorithms for industrial model predictive control | Request PDF.” Accessed: Nov. 06, 2025. [Online]. Available: https://www.researchgate.net/publication/3363634_Algorithms_for_industrial_model_predictive_control [Google Scholar] [Crossref]

17. R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of autonomous mobility-on-demand systems,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 1382–1389, Jun. 2016, doi: 10.1109/ICRA.2016.7487272. [Google Scholar] [Crossref]

18. G. Heinzelman, “Autonomous Vehicles , Ethics of Progress Autonomous Vehicles , Ethics of Progress April , 2019 TMC 592 - Research , Ethical Issues in Technology Prof . Jason Bronowitz Arizona State University,” no. April, 2019, doi: 10.13140/RG.2.2.28046.31048. [Google Scholar] [Crossref]

19. S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous vehicles: challenges, opportunities, and future implications for transportation policies,” J. Mod. Transp., vol. 24, no. 4, pp. 284–303, 2016, doi: 10.1007/s40534-016-0117-3. [Google Scholar] [Crossref]

20. N. Sousa, A. Almeida, J. Coutinho-Rodrigues, and E. Natividade-Jesus, “Dawn of autonomous vehicles: Review and challenges ahead,” Proc. Inst. Civ. Eng. Munic. Eng., vol. 171, no. 1, pp. 3–14, 2018, doi: 10.1680/jmuen.16.00063. [Google Scholar] [Crossref]

21. D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transp. Res. Part A Policy Pract., vol. 77, pp. 167–181, Jul. 2015, doi: 10.1016/J.TRA.2015.04.003. [Google Scholar] [Crossref]

22. V. Vartika, S. Singh, S. Das, S. K. Mishra, and S. S. Sahu, “A Review on Intelligent PID Controllers in Autonomous Vehicle,” Lect. Notes Electr. Eng., vol. 693 LNEE, no. April, pp. 391–399, 2021, doi: 10.1007/978-981-15-7675-1_39. [Google Scholar] [Crossref]

23. H. Etezadi and S. Eshkabilov, “A Comprehensive Overview of Control Algorithms, Sensors, Actuators, and Communication Tools of Autonomous All-Terrain Vehicles in Agriculture,” Agric., vol. 14, no. 2, 2024, doi: 10.3390/agriculture14020163. [Google Scholar] [Crossref]

24. J. Mao, L. Yang, Y. Hu, K. Liu, and J. Du, “Research on Vehicle Adaptive Cruise Control Method Based on Fuzzy Model Predictive Control,” Mach. 2021, Vol. 9, Page 160, vol. 9, no. 8, p. 160, Aug. 2021, doi: 10.3390/MACHINES9080160. [Google Scholar] [Crossref]

25. J. Guo, K. Li, J. Fan, Y. Luo, and J. Wang, “Neural-Fuzzy-Based Adaptive Sliding Mode Automatic Steering Control of Vision-based Unmanned Electric Vehicles,” Chinese J. Mech. Eng. 2021 341, vol. 34, no. 1, pp. 88-, Sep. 2021, doi: 10.1186/S10033-021-00597-W. [Google Scholar] [Crossref]

26. T. Hossain, H. Habibullah, and R. Islam, “Steering and Speed Control System Design for Autonomous Vehicles by Developing an Optimal Hybrid Controller to Track Reference Trajectory,” Machines, vol. 10, no. 6, 2022, doi: 10.3390/machines10060420. [Google Scholar] [Crossref]

27. J. E. Naranjo, F. Serradilla, and F. Nashashibi, “Speed control optimization for autonomous vehicles with metaheuristics,” Electron., vol. 9, no. 4, pp. 1–15, 2020, doi: 10.3390/electronics9040551. [Google Scholar] [Crossref]

28. H. L. Speed, “A Personalized Behavior Learning System for Autonomous Vehicles,” 2区Q1Sensors, 2019. [Google Scholar] [Crossref]

29. G. H. Salih, “Controlling a Longitudinal Autonomous Vehicle Using Modified Particle Swarm Optimization,” 2023, [Online]. Available: https://doi.org/10.21203/rs.3.rs-3655040/v1%0Ahttps://www.researchsquare.com/article/rs-3655040/v1 [Google Scholar] [Crossref]

30. M. Rasib, M. A. Butt, F. Riaz, A. Sulaiman, and M. Akram, “Pixel Level Segmentation Based Drivable Road Region Detection and Steering Angle Estimation Method for Autonomous Driving on Unstructured Roads,” IEEE Access, vol. 9, no. December, pp. 167855–167867, 2021, doi: 10.1109/ACCESS.2021.3134889. [Google Scholar] [Crossref]

31. M. E. Abed, M. Aly, H. H. Ammar, and R. Shalaby, “Steering Control for Autonomous Vehicles Using PID Control with Gradient Descent Tuning and Behavioral Cloning,” 2nd Nov. Intell. Lead. Emerg. Sci. Conf. NILES 2020, pp. 583–587, 2020, doi: 10.1109/NILES50944.2020.9257946. [Google Scholar] [Crossref]

32. C. Bao, J. Feng, J. Wu, S. Liu, G. Xu, and H. Xu, “Model predictive control of steering torque in shared driving of autonomous vehicles,” Sci. Prog., vol. 103, no. 3, pp. 1–22, 2020, doi: 10.1177/0036850420950138. [Google Scholar] [Crossref]

33. W. Farag, “Complex Trajectory Tracking Using PID Control for Autonomous Driving,” Int. J. Intell. Transp. Syst. Res., vol. 18, no. 2, pp. 356–366, 2020, doi: 10.1007/s13177-019-00204-2. [Google Scholar] [Crossref]

34. S. Gokul Krishnan, P. Suresh Kumar, N. Nassar Matara, and Y. Wang, “Real-Time Experimental Evaluation and Analysis of PID and MPC Controllers Using HIL Setup for Robust Steering System of Autonomous Vehicles,” IEEE Access, vol. 12, no. May, pp. 74711–74723, 2024, doi: 10.1109/ACCESS.2024.3406219. [Google Scholar] [Crossref]

35. “Research on autonomous vehicle path tracking control considering roll stability - Fen Lin, Shaobo Wang, Youqun Zhao, Yizhang Cai, 2021.” Accessed: Nov. 06, 2025. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1177/0954407020942006 [Google Scholar] [Crossref]

36. F. A. G. V Based, “Research on Stability Design of Di ff erential Drive,” 2020. [Google Scholar] [Crossref]

37. S. A. Saruchi et al., “applied sciences Novel Motion Sickness Minimization Control via Fuzzy-PID Controller for Autonomous Vehicle,” Appl. Sci., 2020. [Google Scholar] [Crossref]

38. H. Wang, S. Y. Gelbal, and L. Guvenc, “Multi-Objective Digital PID Controller Design in Parameter Space and its Application to Automated Path following,” IEEE Access, vol. 9, pp. 46874–46885, 2021, doi: 10.1109/ACCESS.2021.3066925. [Google Scholar] [Crossref]

39. B. Arifin, B. Y. Suprapto, S. A. D. Prasetyowati, and Z. Nawawi, “Steering Control in Electric Power Steering Autonomous Vehicle Using Type-2 Fuzzy Logic Control and PI Control,” World Electr. Veh. J., vol. 13, no. 3, 2022, doi: 10.3390/wevj13030053. [Google Scholar] [Crossref]

40. D. Chu, H. Li, C. Zhao, and T. Zhou, “Trajectory Tracking of Autonomous Vehicle Based on Model Predictive Control with PID Feedback,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2, pp. 2239–2250, Feb. 2023, doi: 10.1109/TITS.2022.3150365. [Google Scholar] [Crossref]

41. Y. Lv et al., “Hybrid Supervised and Reinforcement Learning for Motion-Sickness-Aware Path Tracking in Autonomous Vehicles,” Sensors, vol. 25, no. 12, pp. 1–21, 2025, doi: 10.3390/s25123695. [Google Scholar] [Crossref]

42. M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Review and performance evaluation of path tracking controllers of autonomous vehicles,” IET Intell. Transp. Syst., vol. 15, no. 5, pp. 646–670, 2021, doi: 10.1049/itr2.12051. [Google Scholar] [Crossref]

43. M. H. Demir and M. Demirok, “Designs of Particle-Swarm-Optimization-Based Intelligent PID Controllers and DC/DC Buck Converters for PEM Fuel-Cell-Powered Four-Wheeled Automated Guided Vehicle,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13052919. [Google Scholar] [Crossref]

44. I. Holovatenko and A. Pysarenko, “Energy-Efficient Path-Following Control System of Automated Guided Vehicles,” J. Control. Autom. Electr. Syst., vol. 32, no. 2, pp. 390–403, 2021, doi: 10.1007/s40313-020-00668-8. [Google Scholar] [Crossref]

45. Z. Wang et al., “Driverless simulation of path tracking based on PID control,” IOP Conf. Ser. Mater. Sci. Eng., vol. 892, no. 1, 2020, doi: 10.1088/1757-899X/892/1/012050. [Google Scholar] [Crossref]

46. Q. Yao, Y. Tian, Q. Wang, and S. Wang, “Control Strategies on Path Tracking for Autonomous Vehicle: State of the Art and Future Challenges,” IEEE Access, vol. 8, pp. 161211–161222, 2020, doi: 10.1109/ACCESS.2020.3020075. [Google Scholar] [Crossref]

47. Z. He, L. Nie, Z. Yin, and S. Huang, “A two-layer controller for lateral path tracking control of autonomous vehicles,” Sensors (Switzerland), vol. 20, no. 13, pp. 1–20, 2020, doi: 10.3390/s20133689. [Google Scholar] [Crossref]

48. J. Ma, H. Xie, K. Song, and H. Liu, “Self-optimizing path tracking controller for intelligent vehicles based on reinforcement learning,” Symmetry (Basel)., vol. 14, no. 1, 2022, doi: 10.3390/sym14010031. [Google Scholar] [Crossref]

49. D. Phan et al., “Intelligent energy management system for conventional autonomous vehicles,” Energy, vol. 191, p. 116476, Jan. 2020, doi: 10.1016/J.ENERGY.2019.116476. [Google Scholar] [Crossref]

50. D. Phan et al., “Neuro-fuzzy system for energy management of conventional autonomous vehicles,” Energies, vol. 13, no. 7, 2020, doi: 10.3390/en13071745. [Google Scholar] [Crossref]

51. Z. Al-Saadi et al., “Intelligent Driver Assistance and Energy Management Systems of Hybrid Electric Autonomous Vehicles,” Sustain., vol. 14, no. 15, 2022, doi: 10.3390/su14159378. [Google Scholar] [Crossref]

52. K. Ye and P. Li, “A new adaptive PSO-PID control strategy of hybrid energy storage system for electric vehicles,” Adv. Mech. Eng., vol. 12, no. 9, pp. 1–15, 2020, doi: 10.1177/1687814020958574. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles