Hepatoprotective and Antihyperglycemic Effects of Sea Grapes (Caulerpa spp.) as a Potential Therapeutic Approach for NAFLD and NASH

Authors

Yasmin Azzahra Arifin

Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131 (Indonesia)

Annette d’Arqom

2Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131 (Indonesia)

Article Information

DOI: 10.51244/IJRSI.2025.1210000319

Subject Category: Non-Communicable Diseases, Nutrition

Volume/Issue: 12/10 | Page No: 3698-3714

Publication Timeline

Submitted: 2025-10-02

Accepted: 2025-10-08

Published: 2025-11-21

Abstract

Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are increasingly prevalent metabolic liver disorders characterized by hepatic lipid accumulation, oxidative stress, inflammation, and insulin resistance. Despite their global burden, effective pharmacological treatments remain limited, which highlights the need for safe and multi-targeted natural alternatives. This literature review summarizes current evidence from in vitro, in vivo, and early clinical studies investigating the hepatoprotective and antihyperglycemic properties of Caulerpa spp., including C. lentillifera, C. racemosa, C. taxifolia, and C. prolifera. The review focuses on research published between 2015 and 2025 related to Caulerpa bioactivity, liver protection, glucose regulation, oxidative stress, lipid metabolism, and gut microbiota modulation. Across the reviewed studies, Caulerpa-derived bioactive compounds such as polysaccharides, carotenoids, peptides, and polyphenols consistently demonstrated hepatoprotective and metabolic benefits. Supplementation improved antioxidant enzyme activities, including superoxide dismutase, catalase, and glutathione, while reducing malondialdehyde levels, thereby protecting hepatocytes from oxidative damage that contributes to NAFLD progression. Several studies also reported downregulation of lipogenic genes such as SREBF1, FAS, and ACC, together with activation of SIRT1 and AMPK signalling pathways, which reduced hepatic triglyceride accumulation. Extracts from C. taxifolia and C. prolifera exhibited strong alpha-amylase and alpha-glucosidase inhibition, improving glucose regulation. In addition, Caulerpa supplementation was shown to restore intestinal barrier integrity and modify gut microbiota composition, leading to lower endotoxin levels and reduced hepatic inflammation. The only available human clinical trial demonstrated a significant reduction in fasting glucose following C. racemosa supplementation, supporting its potential for clinical application. Overall, the evidence indicates that Caulerpa species exert multi-pathway hepatoprotective and antihyperglycemic effects. However, further studies are required to standardize extract preparation, determine optimal dosage, and assess long-term safety. Caulerpa spp. demonstrates promising preclinical potential. However, further translational research and rigorous clinical trials are warranted to validate these findings and determine its feasibility as a nutraceutical for NAFLD, NASH, and metabolic syndrome.

Keywords

Caulerpa spp, Sea grapes, Hepatoprotective, Anti hyperglycemic, Fatty liver disease, Metabolic syndrome

Downloads

References

1. Lin, X., Liu, Z., Xiao, Y., Xie, X., Wang, Y., Li, H., Wang, R., Xie, X., Zhang, Y., Song, Y., & Hu, W. (2024). Metabolomics provides insights into the alleviating effect of dietary Caulerpa lentillifera on diquat-induced oxidative damage in zebrafish (Danio rerio) liver. Aquaculture, 584, 740630. doi:10.1016/j.aquaculture.2024.740630 [Google Scholar] [Crossref]

2. Kurniawan, R., Nurkolis, F., Bukhari, A., Syauki, A. Y., Bahar, B., Aman, A. M., & Taslim, N. A. (2025). Carotenoid and peptide supplementation from Caulerpa sp. (sea grapes) extract mitigate metabolic syndrome in cholesterol-enriched diet rats via modulation of gut microbiota. Diabetology & Metabolic Syndrome, 17, Article 333. doi:10.1186/s13098-025-01869-4 [Google Scholar] [Crossref]

3. Liu, S., Qin, L., Li, D., Lu, F., Liang, M., & Hao, J. (2025). A sulfated polysaccharide from the green alga Caulerpa taxifolia: Characteristics of its structure and anti-diabetic activity. Marine Drugs, 23(10), Article 374. doi:10.3390/md23100374 [Google Scholar] [Crossref]

4. Ouahabi, S., Daoudi, N. E., Chebaibi, M., Mssillou, I., Rahhou, I., Bnouham, M., Hammouti, B., Fauconnier, M.-L., Ayerdi Gotor, A., Rhazi, L., & Ramdani, M. (2025). A comparative study of the phytochemical composition, antioxidant properties, and in vitro anti-diabetic efficacy of different extracts of Caulerpa prolifera. Marine Drugs, 23(7), Article 259. doi:10.3390/md23070259 [Google Scholar] [Crossref]

5. Lin, K.-Y., Yang, H.-Y., Yang, S.-C., Chen, Y.-L., Watanabe, Y., & Chen, J.-R. (2023). Caulerpa lentillifera improves ethanol-induced liver injury and modulates the gut microbiota in rats. Current Research in Food Science, 7, 100546. doi:10.1016/j.crfs.2023.100546 [Google Scholar] [Crossref]

6. Sangpairoj, K., Pranweerapaiboon, K., Saengkhae, C., Meemon, K., Niamnont, N., Tamtin, M., Sobhon, P., Yisarakun, W., & Siangcham, T. (2024). Extracts of tropical green seaweed Caulerpa lentillifera reduce hepatic lipid accumulation by modulating lipid metabolism molecules in HepG2 cells. Heliyon, 10(5), e27635. doi:10.1016/j.heliyon.2024.e27635 [Google Scholar] [Crossref]

7. Mayulu, N., Gunawan, W. B., Park, M. N., Chung, S., Suh, J. Y., Song, H., Kusuma, R. J., Taslim, N. A., Kurniawan, R., Kartawidjajaputra, F., Nurkolis, F., & Kim, B. (2023). Sulfated polysaccharide from Caulerpa racemosa attenuates the obesity-induced cardiometabolic syndrome via regulating the PRMT1-DDAH-ADMA with mTOR-SIRT1-AMPK pathways and gut microbiota modulation. Antioxidants, 12(8), Article 1555. doi:10.3390/antiox12081555 [Google Scholar] [Crossref]

8. Dissanayake, I. H., Bandaranayake, U., Keerthirathna, L. R., Manawadu, C., Silva, R. M., Mohamed, B., Ali, R., & Peiris, D. C. (2022). Integration of in vitro and in silico analysis of Caulerpa racemosa against antioxidant, antidiabetic, and anticancer activities. Scientific Reports, 12, Article 20848. doi:10.1038/s41598-022-24021-y [Google Scholar] [Crossref]

9. Nurkolis, F., Taslim, N. A., Subali, D., Kurniawan, R., Hardinsyah, H., Gunawan, W. B., Kusuma, R. J., Yusuf, V. M., Pramono, A., Kang, S., Mayulu, N., Syauki, A. Y., Tallei, T. E., Tsopmo, A., & Kim, B. (2023). Dietary supplementation of Caulerpa racemosa ameliorates cardiometabolic syndrome via regulation of PRMT-1/DDAH/ADMA pathway and gut microbiome in mice. Nutrients, 15(4), Article 909. doi:10.3390/nu15040909 [Google Scholar] [Crossref]

10. Manoppo, J. I. C., Kartawidjajaputra, F., Gunawan, W., Kurniawan, R., Nurkolis, F., Suharman, F., & Kim, B. (2022). Amelioration of obesity-related metabolic disorders via supplementation of Caulerpa lentillifera in rats fed with a high-fat and high-cholesterol diet. Frontiers in Nutrition, 9, Article 1010867. doi:10.3389/fnut.2022.1010867 [Google Scholar] [Crossref]

11. Permatasari, H. K., Kusuma, R. J., Nurkolis, F., Pratama, M. Y., Nugraha, A. S., Apriliana, H. E., Wibowo, A. M., & Kim, B. (2022). Metabolomic assay, computational screening, and pharmacological evaluation of Caulerpa racemosa as an anti-obesity with anti-aging by altering lipid profile and peroxisome proliferator-activated receptor-γ coactivator 1-α levels. Frontiers in Nutrition, 9, Article 939073. doi:10.3389/fnut.2022.939073 [Google Scholar] [Crossref]

12. Kuswari, M., Nurkolis, F., Mayulu, N., Kartawidjajaputra, F., Gunawan, W. B., Tallei, T. E., & Kim, B. (2021). Sea grapes extract improves blood glucose, total cholesterol, and PGC-1α in rats fed on cholesterol- and fat-enriched diet. F1000Research, 10, Article 718. doi:10.12688/f1000research.54952.2 [Google Scholar] [Crossref]

13. Cao, M., Li, Y., Famurewa, A. C., & Olatunji, O. J. (2021). Antidiabetic and nephroprotective effects of polysaccharide extract from the seaweed Caulerpa racemosa in high fructose-streptozotocin-induced diabetic nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 2121–2131. doi:10.2147/DMSO.S302748 [Google Scholar] [Crossref]

14. du Preez, R., Majzoub, M. E., Thomas, T., Panchal, S. K., & Brown, L. (2020). Caulerpa lentillifera (sea grapes) improves cardiovascular and metabolic health of rats with diet-induced metabolic syndrome. Metabolites, 10(12), Article 500. doi:10.3390/metabo10120500 [Google Scholar] [Crossref]

15. Sharma, B. R., Kim, H. J., & Rhyu, D. Y. (2015). Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. Journal of Translational Medicine, 13, Article 62. doi:10.1186/s12967-015-0412-5 [Google Scholar] [Crossref]

16. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 24(7), 908–922. https://doi.org/10.1038/s41591-018-0104-9 [Google Scholar] [Crossref]

17. Cotter, T. G., & Rinella, M. (2020). NAFLD 2020: The state of the disease. Nature Reviews Gastroenterology & Hepatology, 17(4), 236–250. https://doi.org/10.1038/s41575-019-0247-7 [ [Google Scholar] [Crossref]

18. Tilg, H., Effenberger, M., & Stadlmann, S. (2021). Gut–liver axis in nonalcoholic fatty liver disease: Pathophysiological insights and therapeutic implications. Nature Reviews Gastroenterology & Hepatology, 18(9), 523–538. https://doi.org/10.1038/s41575-021-00439-3 [Google Scholar] [Crossref]

19. Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012 [Google Scholar] [Crossref]

20. Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160 [Google Scholar] [Crossref]

21. U.S. Food and Drug Administration. (2016, December). Botanical Drug Development: Guidance for Industry. https://www.fda.gov/files/drugs/published/Botanical-Drug-Development--Guidance-for-Industry.pdf [Google Scholar] [Crossref]

22. Chen, J., Xu, Y., Wang, Y., Zhang, X., Li, Z., & Chen, J. (2022). Antioxidant and hepatoprotective effects of polysaccharides from Caulerpa lentillifera on nonalcoholic fatty liver disease in mice. Journal of Functional Foods, 90, 104975. [Google Scholar] [Crossref]

23. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 24(7), 908–922. [Google Scholar] [Crossref]

24. Kusuma, I. W., Hidayati, N., & Murwanti, R. (2020). -Amylase and -Glucosidase inhibitory activities of Caulerpa racemosa extracts. Pharmacognosy Journal, 12(4), 819–824. [Google Scholar] [Crossref]

25. Li, S., Tan, H. Y., Wang, N., Zhang, Z. J., Lao, L., Wong, C. W., & Feng, Y. (2015). The role of oxidative stress and antioxidants in nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 16(11), 27385–27405. [Google Scholar] [Crossref]

26. Sall, F. N., Tbin, M., Yim, J., Ahn, G., Park, S. Y., Lee, K. W., & Lee, H. J. (2021). Caulerpa lentillifera extract improves intestinal barrier function and modulates gut microbiota in high-fat diet-fed mice. Marine Drugs, 19(12), 675. [Google Scholar] [Crossref]

27. Tilg, H., & Adolph, T. E. (2020). Gut-liver axis: A 'GI' new home for microbes. Gut, 69(8), 1369–1370. [Google Scholar] [Crossref]

28. Zhao, P., Wang, H., Wu, Y., Liu, X., & Zhang, Y. (2021). Natural compounds as activators of the AMPK/SIRT1 pathway for the treatment of non-alcoholic fatty liver disease. Current Medicinal Chemistry, 28(28), 5785–5807 [Google Scholar] [Crossref]

29. Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández-González, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N., & Critchley, A. T. (2017). Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52(4), 391–406 [Google Scholar] [Crossref]

30. United Nations Environment Assembly. (2022). Enhancing circular economy as a contribution to achieving sustainable consumption and production (Resolution 11). United Nations Environment Programme. https://docs.un.org/en/UNEP/EA.5/Res.11 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles