Advances on Quinoline Derivatives: A Review of Synthesis and Biological Activities
Authors
Department of Science Laboratory Technology, University of Nigeria, Nsukka Department of Chemistry, University of Iowa, USA (Nigeria)
Department of Science Laboratory Technology, University of Nigeria, Nsukka (Nigeria)
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka (Nigeria)
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka (Nigeria)
Department of Pharmacy, University of Nigeria, Nsukka (Nigeria)
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka (Nigeria)
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.120800228
Subject Category: Pharmaceutics
Volume/Issue: 12/9 | Page No: 2584-2610
Publication Timeline
Submitted: 2025-08-25
Accepted: 2025-09-01
Published: 2025-09-25
Abstract
Quinoline compounds and their derivatives have a vast distribution in nature coupled with their immense therapeutic potential. Due to the unfading therapeutic benefits of these compounds over the years, a lot of researchers are exploring the synthesis of various derivatives of quinoline which are screened for different therapeutic activities including, anti-malarial, anti-microbial, anti-inflammatory, anti-convulsant, anti-cancer anti-mycobacterial, cardio-protective, neuroprotective activity etc. This review highlights various advances in the synthetic routes and methodology for some quinoline derivatives including Friedlander modified metal-catalyzed reactions, Photo-induced oxidative annulation reaction, Microwave-assisted doebner reaction and their biological properties.
Keywords
Quinolines, Derivatives, Synthetic routes, biological properties
Downloads
References
1. Tanaka, M.; Szatmári, I.; Vécsei, L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals 2025, 18 (5), 607. https://doi.org/10.3390/ph18050607. [Google Scholar] [Crossref]
2. Zhao Y.Q., Li X., Guo H.Y., Shen Q.K., Quan Z.S., Luan T. Application of Quinoline Ring in Structural Modification of Natural Products. Molecules 2023, 28(18): 6478. [Google Scholar] [Crossref]
3. https://doi.org/10.3390/molecules28186478. [Google Scholar] [Crossref]
4. Mittal R.K, Aggarwal M.,Khatana K.,Purohit P. Quinoline: Synthesis to application. Medicinal Chemistry 2023, 19 (1),pp 31-46 [Google Scholar] [Crossref]
5. Li, J.; Gu, A.; Nong, X.; Zhai, X.; Yue, Z.; Li, M.; Liu, Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. Chem. Rec. 2023, 23 (12), e202300293. https://doi.org/10.1002/tcr.202300293. [Google Scholar] [Crossref]
6. Kumaraswamy, B.; Hemalatha, K.; Pal, R.; Matada, G. P.; Hosamani, K. R.; Aayishamma, I.; Aishwarya, N. S. An Insight into Sustainable and Green Chemistry Approaches for the Synthesis of Quinoline Derivatives as Anticancer Agents. Eur. J. Med. Chem. 2024, 275, 116561. https://doi.org/10.1016/j.ejmech.2024.116561. [Google Scholar] [Crossref]
7. Gach-Janczak, K.; Piekielna-Ciesielska, J.; Waśkiewicz, J.; Krakowiak, K.; Wtorek, K.; Janecka, A. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. Molecules 2025, 30 (1), 163. https://doi.org/10.3390/molecules30010163. [Google Scholar] [Crossref]
8. Ajani, O. O.; Iyaye, K. T.; Ademosun, O. T. Recent Advances in Chemistry and Therapeutic Potential of Functionalized Quinoline Motifs—A Review. RSC Adv. 2022, 12 (29), 18594–18614. https://doi.org/10.1039/d2ra02896d. [Google Scholar] [Crossref]
9. Bharti, A.; Bijauliya, R. K.; Yadav, A.; Suman. The Chemical and Pharmacological Advancements of Quinoline: A Mini Review. J. Drug Deliv. Ther. 2022, 12 (4), 211–215. [Google Scholar] [Crossref]
10. Ferreira, L. M.; García-García, P.; García, P. A.; Castro, M. A. A Review on Quinolines: New Green Synthetic Methods and Bioactive Potential. Eur. J. Pharm. Sci. 2025, 209, 107097. https://doi.org/10.1016/j.ejps.2025.107097. [Google Scholar] [Crossref]
11. Rao, I. R.; Punitha, P.; Premalatha, B.; Prasad, T. S.; Suresh, M. Synthesis, Structure Identification, Antioxidant and Antimicrobial Activities of Some Novel Quinoline Derivatives. Discov. Chem. 2024, 1 (65), 1–13. https://doi.org/10.1007/s44371-024-00068-w. [Google Scholar] [Crossref]
12. Dine, I.; Mulugeta, E.; Melaku, Y.; Belete, M. Recent Advances in the Synthesis of Pharmaceutically Active 4-Quinolone and Its Analogues: A Review. RSC Adv. 2023, 13, 8657–8682. [Google Scholar] [Crossref]
13. Jatolia, S. N.; Shubh, L.; Kanahiya, L.; Bhojak, N.; Regar, O. P. A Review of Quinoline and Its Derivatives. Int. J. Novel Res. Phys. Chem. Math. 2022, 9 (2), 6–16. [Google Scholar] [Crossref]
14. Martin-Àcosta, P.; Cuadrado, I.; Gonzàles-Confrade, L.; Pestano, R.; Hortelano, S.; De-las Heras, B.; Esteves-Braun, A. Synthesis of Quinoline and Dihydroquinoline Embeline Derivatives as Cardio-Protectives. J. Nat. Prod. 2023, 86, 317–329. [Google Scholar] [Crossref]
15. Ahmad, A.; Yarima, U.; Ibrahim, A. A.; Salihu, F. A.; Goni, I.; Yunusa, Z. Y. Plants That Have Quinoline Alkaloid and Their Biological Activity. J. Appl. Pharm. 2023, 15 (6), 387. [Google Scholar] [Crossref]
16. Abdelgalil, M. M.; Ammar, Y. A.; Ali, A. M.; Ali, K. A.; Ragab, A. A Novel of Quinoxaline Derivatives Tagged with Pyrrolidinyl Scaffold as a New Class of Antimicrobial Agents: Design, Synthesis, Antimicrobial Activity, and Molecular Docking Simulation. J. Mol. Struct. 2023, 1274 (2), 134443. https://doi.org/10.1016/j.molstruc.2022.134443. [Google Scholar] [Crossref]
17. Wesam, S. S.; Mostafa, M. K.; Doaa, A. E.; Krishna, K. Y.; Magda, H. A. Current Progress Toward Synthetic Routes and Medicinal Significance of Quinoline. Med. Chem. Res. 2023, 32, 2443–2457. [Google Scholar] [Crossref]
18. Panchal, N. B.; Vaghela, V. M. From Molecules to Medicine: The Remarkable Pharmacological Odyssey of Quinoline and Its Derivatives. Orient. J. Chem. 2023, 39 (3). [Google Scholar] [Crossref]
19. Kavalapure, R. S.; Alegaon, S. G.; Gharge, S.; Ranade, S. D.; Gudasi, S.; Venkatasubramanian, U.; Priya, S. A. Structure-Guided Development of Quinoline Derivatives Targeting Kinesin Spindle Protein. Bioorg. Med. Chem. Lett. 2025, 125–126, 130278. https://doi.org/10.1016/j.bmcl.2025.130278. [Google Scholar] [Crossref]
20. Asokan, K.; Sivaraman, S.; Nallasamy, K.; Subbiah, J.; Paranthaman, S. Spectroscopic, DFT, In Silico, and Estimation of Biological Activity of 2,4‐Dichloro‐6,7‐Dimethoxyquinazoline as a Potential Anti‐Alzheimer's Disease Therapeutic Agent. Int. J. Quantum Chem. 2025, 125 (1). https://doi.org/10.1002/qua.70006. [Google Scholar] [Crossref]
21. Lewinska, G.; Jerzy, S.; Marszalek, K. W. Application of Quinoline Derivatives in Third-Generation Photovoltaics. J. Mater. Sci.: Mater. Electron. 2021, 32, 18451–18465. [Google Scholar] [Crossref]
22. Burlov, A. S.; Vlasenko, V. G.; Garnovskii, D. A.; Uraev, A. I.; Koshchienko, Y. V.; Mal’tsev, E. I.; Lypenko, D. A.; Dmitriev, A. V. Photoluminescence and Electroluminescence of Metal Complexes of Quinoline Derivatives. Russ. J. Coord. Chem. 2023, 49 (1), S29–S37. https://doi.org/10.1134/S107032842360021. [Google Scholar] [Crossref]
23. Faydy, M. E.; Barrahi, A.; Timoudan, N.; Warad, I.; Safi, Z.; Wazzan, N.; Kaichouh, G.; Benhiba, F.; Dafali, A.; Lakhrissi, B.; Zarrouk, A. Corrosion Inhibition and Adsorption Behaviour of Two Novel Quinolin-8-ols on Carbon Steel Surface in HCl: Synthesis, Electrochemical, Surface Characterisation, and Quantum Chemical Approaches. Can. Metall. Q. 2025, 1–23. [Google Scholar] [Crossref]
24. Bouassiria, M.; El Faydy, M.; Benhiba, F.; Laabaissi, T.; Fakhry, H.; Saoiabi, S.; Touir, R.; Warad, I.; Guenbour, A.; Lakhrissi, B.; Oudda, H.; Zarrouk, A. Corrosion Effectiveness of 5-(4-Phenylpiperazin-1-yl)methyl)quinolin-8-ol for Carbon Steel in 1.0 M HCl. J. Bio Tribo Corros. 2022, 8 (43). https://doi.org/10.1007/s40735-022-00641-9. [Google Scholar] [Crossref]
25. Răuță, D.; Matei, E.; Avramescu, S. Recent Development of Corrosion Inhibitors: Types, Mechanisms, Electrochemical Behavior, Efficiency, and Environmental Impact. Technol. 2025, 13 (3), 103. https://doi.org/10.3390/technologies13030103. [Google Scholar] [Crossref]
26. Cai, Q.; Song, H.; Zhang, Y.; Zhu, Z.; Zhang, J.; Chen, J. Quinoline Derivatives in Discovery and Development of Pesticides. J. Agric. Food Chem. 2024, 72 (22), 12373–12386. [Google Scholar] [Crossref]
27. Zhang, Y.; Lu, S.; Zhu, Z.; Du, T.; Zhu, M.; Chen, J. Fungicidal and Nematicidal Activities of Pyrazolopyrimidine against 14 Pathogenic Fungi and 3 Plant Nematodes. Physiol. Mol. Plant Pathol. 2025, 139, 102798. https://doi.org/10.1016/j.pmpp.2025.102798. [Google Scholar] [Crossref]
28. Elnaggar, N. N.; Hamama, W. S.; El Salam, M. A.; Ghaith, E. A. Chemoselective Synthesis of Tunable Poly-Functionalized Binary Pyrazolyl and Annulated Pyrazolo/Pyrido Anchored on Quinolinone: Insecticidal and Antioxidant Studies. RSC Adv. 2025, 15 (8), 6050–6067. https://doi.org/10.1039/D4RA08834D. [Google Scholar] [Crossref]
29. Peron, C.; Gonçalves, R. S.; Moura, S. Advances in the Potential of Quinoline‐Derived Metal Complexes as Antimalarial Agents: A Review. Appl. Organomet. Chem. 2025, 39 (3), 70050. [Google Scholar] [Crossref]
30. Mishra, R.; Xavier, J.; Kumar, N.; Krishna, G.; Dhakad, P. K.; Silva dos Santos, H.; Bandeira, P. N.; Rodrigues, T. H.; Gondim, D. M.; Ribeiro, W. H.; Sales da Silva, D.; Teixeira, A. M.; Pereira, W. F.; Marinho, E. S.; Sucheta. Exploring Quinoline Derivatives: Their Antimalarial Efficacy and Structural Features. Med. Chem. 2025, 21 (2), 96–121. https://doi.org/10.2174/0115734064318361240827072124. [Google Scholar] [Crossref]
31. Roy, D.; Anas, M.; Manhas, A.; Saha, S.; Kumar, N.; Panda, G. Synthesis, Biological Evaluation, Structure–Activity Relationship Studies of Quinoline-Imidazole Derivatives as Potent Antimalarial Agents. Bioorg. Chem. 2022, 121, 105671. https://doi.org/10.1016/j.bioorg.2022.105671. [Google Scholar] [Crossref]
32. Srinivasa, B. J.; Ullal, S. N.; Kalal, B. S. Quinoline Conjugates for Enhanced Antimalarial Activity: A Review on Synthesis by Molecular Hybridization and Structure–Activity Relationship (SAR) Investigation. Am. J. Transl. Res. 2025, 17 (2), 1335–1375. https://doi.org/10.62347/TTHX6526. [Google Scholar] [Crossref]
33. Kucharski, D. J.; Jaszczak, M. K.; Boratyński, P. J. A Review of Modifications of Quinoline Antimalarials: Mefloquine and (Hydroxy)Chloroquine. Molecules 2022, 27 (3), 1003. https://doi.org/10.3390/molecules27031003. [Google Scholar] [Crossref]
34. Hernández-Ayala, L. F.; Guzmán-López, E. G.; Galano, A. Quinoline Derivatives: Promising Antioxidants with Neuroprotective Potential. Antioxidants 2023, 12 (10), 1853. https://doi.org/10.3390/antiox12101853. [Google Scholar] [Crossref]
35. Mathada, B. S. The Versatile Quinoline and Its Derivatives as Anti-Cancer Agents: An Overview. Polycycl. Aromat. Compd. 2022, 43 (5), 4333–4345. https://doi.org/10.1080/10406638.2022.2089177. [Google Scholar] [Crossref]
36. Zieba, A.; Pindjakova, D.; Latocha, M.; Plonka-Czerw, J.; Kusmierz, D.; Cizek, A.; Jampilek, J. Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides. Molecules 2024, 29 (17), 4044. https://doi.org/10.3390/molecules29174044. [Google Scholar] [Crossref]
37. Kushwaha, P. Quinoline as a Privileged Structure: A Recent Update on Synthesis and Biological Activities. Curr. Top. Med. Chem. 2024, 24 (27), 2377–2419. https://doi.org/10.2174/0115680266314303240830074056. [Google Scholar] [Crossref]
38. Elebiju, O. F.; Ajani, O. O.; Oduselu, G. O.; Ogunnupebi, T. A.; Adebiyi, E. Recent Advances in Functionalized Quinoline Scaffolds and Hybrids—Exceptional Pharmacophore in Therapeutic Medicine. Front. Chem. 2023, 10, 1074331. https://doi.org/10.3389/fchem.2022.1074331. [Google Scholar] [Crossref]
39. Wang, X.; Yang, A.; Xiao, H.; Xiao, W.; Xu, L.; Wang, D. C3–H Trifluoroacetylation of Quinolines and Pyridines: Access to Heteroaryl Ketones, Carboxylic Acids, and Amides. Org. Lett. 2025, 27 (22), 5625–5631. https://doi.org/10.1021/acs.orglett.5c01350. [Google Scholar] [Crossref]
40. Gao, M.; Ding, C.; Huang, P.; Xie, R.; Liu, Y. Photoredox Radical Cyclization of o-Vinylaryl Isocyanides and Aryldiazonium Tetrafluoroborates for the Synthesis of 2,4-Disubstituted Quinolines. J. Org. Chem. 2025, 90 (13), 4571–4579. https://doi.org/10.1021/acs.joc.4c03121. [Google Scholar] [Crossref]
41. Suresh, S.; Keerthana, P.; Khan, F. N. Alkylated Quinolines through Benzylic sp³ C−H Functionalization: Sequential Synthesis and Photophysical Studies. Asian J. Org. Chem. 2025, 14 (2). https://doi.org/10.1002/ajoc.202400607. [Google Scholar] [Crossref]
42. Rao, L. B.; Sreenivasulu, C.; Kishore, D. R.; Satyanarayana, G. Trending Strategies for the Synthesis of Quinolinones and Isoquinolinones. Tetrahedron 2022, 127, 133093. https://doi.org/10.1016/j.tet.2022.133093. [Google Scholar] [Crossref]
43. Mohasin, M.; Alam, M. Z.; Ullah, Q.; Ahmad, A.; Rahaman, P. F.; Khan, S. A. A Review on Synthesis and Biological Applications of Quinoline Derivatives as Fused Aromatic Compounds. Polycycl. Aromat. Compd. 2023, 44 (9), 6369–6398. https://doi.org/10.1080/10406638.2023.2270118. [Google Scholar] [Crossref]
44. Shehab, W. S.; Amer, M. M. K.; Elsayed, D. A.; Yadav, K. K.; Abdellattif, M. H. Current Progress Toward Synthetic Routes and Medicinal Significance of Quinoline. Med. Chem. Res. 2023, 32, 2443–2457. https://doi.org/10.1007/s00044-023-03121-y. [Google Scholar] [Crossref]
45. Darbandizadeh, S. A.; Balalaie, S. Recent Advances in the Synthesis of Fused-Cyclic Quinolines: Review. Asian J. Org. Chem. 2024, 13 (5), e202400041. https://doi.org/10.1002/ajoc.202400041. [Google Scholar] [Crossref]
46. Mandal, A.; Khan, A. T. Recent Advancement in the Synthesis of Quinoline Derivatives via Multicomponent Reactions. Org. Biomol. Chem. 2024, 22 (12), 2339–2358. [Google Scholar] [Crossref]
47. Hellel, D.; Chafaa, F.; Nacereddine, A. K. Synthesis of Tetrahydroquinolines and Quinoline Derivatives through the Lewis Acid Catalysed Povarov Reaction: A Comparative Study between Multi-Step and Multi-Component Methods. Sci. Radices 2023, 2 (3), 295–308. [Google Scholar] [Crossref]
48. Mondal, A.; Pal, D.; Phukan, H. J.; Roy, M.; Kumar, S.; Purkayastha, S.; Guha, A. K.; Srimani, D. Manganese Complex Catalyzed Sequential Multi-Component Reaction: Enroute to a Quinoline-Derived Azafluorenes. ChemSusChem 2023, 17 (7), e202301138. https://doi.org/10.1002/cssc.202301138. [Google Scholar] [Crossref]
49. Dhara, S.; Islam, S.; Das, A. R. One-Pot Three-Component Synthesis of Quinolines and Some Other Selective Six-Membered Heterocycles with Biological Importance. In Multicomponent Synthesis: Bioactive Heterocycles; 2023; 5, 117. [Google Scholar] [Crossref]
50. Mohareb, R. M.; Zahran, M. K.; Maghraby, H. R.; Abdallah, A. E. Multicomponent Reactions of Cyanoacetanilide Derivatives: Synthesis of Coumarin and Quinoline Derivatives and Evaluations of Their Cytotoxicity. Bull. Chem. Soc. Ethiop. 2024, 38 (3), 739–750. [Google Scholar] [Crossref]
51. Kumar, A.; Dhameliya, T. M.; Sharma, K.; Patel, K. A.; Hirani, R. V. Environmentally Benign Approaches Towards the Synthesis of Quinolines. ChemistrySelect 2022, 7 (22), e202201059. https://doi.org/10.1002/slct.202201059. [Google Scholar] [Crossref]
52. Wang, Z.-H.; Shen, L.-W.; Yang, P.; You, Y.; Zhao, J.-Q.; Yuan, W.-C. Access to 4-Trifluoromethyl Quinolines via Cu-Catalyzed Annulation Reaction of Ketone Oxime Acetates with ortho-Trifluoroacetyl Anilines under Redox-Neutral Conditions. J. Org. Chem. 2022, 87, 5804–5816. [Google Scholar] [Crossref]
53. Chen, B.W.J., Chang, L.L., Yang, J., Wei, Y., Yang, J., Ying, J.Y. Palladium-based nanocatalyst for one-pot synthesis of polysubstituted quinolines. Chem. Cat. Chem. 2013, 5, 277–283 [Google Scholar] [Crossref]
54. Wang, X.; Yan, K.; Liu, M.; Wen, J.; Liu, X.; Sui, X.; Shang, W.; and Xiaoyu, W. Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. New Journal of Chemistry, 2022, 16 [Google Scholar] [Crossref]
55. Zou, L.-H.; Yang, J.-C.; Ma, C.-W.; Liao, M.-L.; Li, P.-G. Copper-Catalyzed [4+1+1] Annulation of Ammonium Salts and Anthranils: Synthesis of 2,3-Diaroylquinolines. J. Org. Chem. 2024, 89, 7446–7454 [Google Scholar] [Crossref]
56. Huang, G.; Yuan, J.-M.; Li, J.; Zhou, H.; Xu, J.; Zhu, F.; Liang, Q.; Liu, Z.; Huang, J. Synthesis of 3-Sulfonylquinolines by Visible-light Promoted Metal-free Cascade Cycloaddition Involving N-Propargylanilines and Sodium Sulfinates. New J. Chem. 2020, 44, 3189–3193. [Google Scholar] [Crossref]
57. Talvite, J.; Alanko, I.; Bulatov, E.; Koivula, J.; Pollanen, T.; helaja, J.. Phenanthracenequinone-Sensitized Photocatalytic Synthesis of Polysubstituted Quinolines from 2-Vinylarylimines. Org. Lett. 2022, 24, 274-278 [Google Scholar] [Crossref]
58. Crabtree, R. H. An Organometallic Future in Green and Energy Chemistry. Organometallics. 2011 [Google Scholar] [Crossref]
59. Chen, P., Nan, J., Hu, Y., Ma, Q., Ma, Y. Ru(II)-catalyzed/NH2-assisted selective alkenyl C-H [5 + 1] annulation of alkenylanilines with sulfoxonium ylides to quinolines. Org. Lett. 2019, 21, 4812–4815 [Google Scholar] [Crossref]
60. Dunn, P.J. The Importance of Green Chemistry in Process Research and Development. Chem. Soc. Rev. 2012, 41, 1452–1461 [Google Scholar] [Crossref]
61. Ramann, G.A., Cowen, B.J. Recent Advances in Metal-free Quinoline synthesis. Molecules 2016 [Google Scholar] [Crossref]
62. Patel, D.B., Rajani, D.P., Rajani, S.D., Patel, H.D. A green synthesis of quinoline-4- carboxylic derivatives using p-toluenesulfonic acid as an efficient organocatalyst under microwave irradiation and their docking, molecular dynamics, ADME-tox and biological evaluation. J. Heterocycl. Chem. 2020, 57, 1524–1544 [Google Scholar] [Crossref]
63. Faraz, S., Khan, A.T. p-TSA.H2O catalyzed metal-free and environmentally benign synthesis of 4-aryl quinolines from arylamine, arylacetylene, and dimethyl sulfoxide. Org. Biomol. Chem. 2023, 21, 7553–7560 [Google Scholar] [Crossref]
64. Rao, I. R.; Punitha, P.; Premalatha, B.; et al. Synthesis, structure identification, antioxidant and antimicrobial activities of some novel quinoline derivatives. Discov. Chem. 2024, 1, 65. https://doi.org/10.1007/s44371-024-00068-w [Google Scholar] [Crossref]
65. Prashanth, T.; Lakshmi Ranganatha, V.; Al-Ghorbani, M.; et al. Design, synthesis and characterization of 8-[(1H-benzo[d]imidazol-2-yl) methoxy] quinoline derivatives as antimicrobial agents. Discov. Chem. 2025, 2, 19. https://doi.org/10.1007/s44371-025-00089-z. [Google Scholar] [Crossref]
66. Ghorab, M.M.; Soliman, A.M.; El-Sayyad, G.S.; Abdel-Kader, S.M.; and El-Batal, A.I. Synthesis, Antimicrobial and Antibiofilm Activities of some novel-7-Methoxyquinolines Derivatives Bearing Sulfonamide Moiety against urinary tract infection-causing pathogenic microbes, International Journal of Molecular Sciences, 2023, 24, 8933 [Google Scholar] [Crossref]
67. Zieba, A.; Pindjakova, D.; Latocha, M.; Plonka-Czerw, J.; Kusmierz, D.; Cizek. A.; and Jampilek, J. Design, Synthesis , and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides, Molecules, 2024 29,4044. [Google Scholar] [Crossref]
68. Saifi, Z.; Ali, A.; Inam, A.; Kamthan, M.; Abid, M.; and Ali, I. Synthesis and antibacterial evaluation of quinoline- sulfonamide hybrid compounds: a promising strategy against bacteria resistance, RSC Adv. 2025, 15,1680-1689. [Google Scholar] [Crossref]
69. El‐Shershaby, M.H.; El‐Gamal, K.M.; Bayoumi, A.H.; El‐Ad, K.; Ahmed, H.E.A.; and Abulkhair, S.H. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives, Arch pharm. 2020, 20(2),810-824. [Google Scholar] [Crossref]
70. Singh, V.K.; Kumari, P.; Som, A.; Rai, S.; Mishra, R.; and Singh, R. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study, Journal of Biomolecular Structure and Dynamics, 2024, 42(13): 6904-6924. [Google Scholar] [Crossref]
71. Al-Materneh, C.M.; Nicolescu, A.; Marinas, I.C.; Gaboreanu, D.M.; Shova, S.; Dascalu, A.; Silion, M.; and Pinteala, M. New Library of Iodo-quinoline derivatives obtained by analternative synthetic pathway and their antimicrobial activity, Molecule, 2024, 29, 772 [Google Scholar] [Crossref]
72. Abdelrahman, M. A.; Almahli, H.; Al-Warhi, T.; Majrashi, T. A.; Abdel-Aziz, M. M.; Eldehna, W. M.; Said, M. A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi- and extensively drug-resistant Mycobacterium tuberculosis. Molecules 2022, 27(24), 8807. https://doi.org/10.3390/molecules27248807 [Google Scholar] [Crossref]
73. Lagdhira, M.; Pandya, C.; Pandyab, A.; Vekariyac, H.R.; and Rajanid, D.P. Design and synthesis of new quinoline hybrid derivatives and their antimicrobial, antimalarial and antitubercular activities, Indian Journal of Chemistry, 2021, 60, 986-998. [Google Scholar] [Crossref]
74. Touré, M.; Gassama, A.; Sambou, O.; Cavé, C.; and Cojean, S. Synthesis and in vitro/in silico evaluation of the antimalarial activity of potential amino-quinoline derivatives, European journal of Medicinal Chemistry, 2024, 13,10024-10056. [Google Scholar] [Crossref]
75. Choudhary, D.; Rani, P.; Rangra, N.K.; Gupta, G.K.; Khokra, S.L.; Bhandare, R.R.; and Shaik, B.A. Designing novel anti-plasmodial quinoline–furanone hybrids: computational insights, synthesis, and biological evaluation targeting Plasmodium falciparum lactate dehydrogenase, Royal Society of Chemistry Advance, 2024, 14, 18764-18776. [Google Scholar] [Crossref]
76. Zaraei, S.; Al-Ach, N.N.; Anbar,S.H.; El-Gamal, R.; Tarazi ,H.; Tokatly,T.S.; Kalla,R.R.; Munther,M.A.; Wahba,M.M.; Alshihabi,M.A.; Shehata, M.K.; Sbenati, R.M.; Shahin, I.A.; Awady,R.; Al-Tel, T.H.; and El-Gamal, M.I. Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity, European Journal of Medicinal Chemistry, 2022, 238, 114434-53. [Google Scholar] [Crossref]
77. Khodair, M.A.; Mohamed, M.S.; Awad, S.M.; and Abd El-Hameed, H.R. Synthesis, Anticancer Activity, and Docking Study of Novel Benzo[h]quinoline Derivatives, Trends in Advanced Science and Technology, 2024, 1,159-176. [Google Scholar] [Crossref]
78. Srinivasa, B.S.; Poojary, B.; Kalal S.B.; Brahmavara, U.; Vaishali, D.; Das, J.A.; Kalenga, T.M.; Paidikondala, M.; and Shankar,K.M. Design, synthesis and anticancer activity of Novel benzimidazole containing quinoline hybrids, Results in Chemistry, 2024, 9,101631. [Google Scholar] [Crossref]
79. Shaldam, M.; Nocentini, A.; Elsayed, Z.M.; Ibrahim, T.M.; Salem, R.; El-Domany, R.A.; Capasso, C.; Supuran, C.T.; and Eldehna W.M. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors, International Journal of Molecular Sciences, 2021, 22, 11119. [Google Scholar] [Crossref]
80. Marciniec, K.; Rzepka, Z.; Chrobak, E.; Boryczka, S.; Latocha, M.; Wrzesniok, D.; and Bebetro. A. Design, Synthesis and Biological Evaluation of Quinoline-8-Sulfonamides as Inhibitors of the tumor Cell-SpecificM2Isoform of Pyruvate Kinase: Preliminary Study, Molecules, 2023, 28, 2509. [Google Scholar] [Crossref]
81. Ghanim, A. M.; Girgis, A. S.; Kariuki, Benson M.; Samir, N.; Said, M. F.; Abdelnaser, A. N.; Bekheit, M. S.; Abdelhameed, M. F.; Almalki, A. J.; Ibrahim, T.S.; and Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorganic Chemistry, 2022, ;, 105557. [Google Scholar] [Crossref]
82. Silva, S.E.B.; Moura, J.A.S.; Júnior, J.F.B.; Gomes, P.A.; Paula, S.K.S.; Carvalho, D.; Viana, F.; Ramalho, E.A.; Melo , J.V.; Pereira, M.C.; Pitta, M. G.; Pitta, I.R.; and Pitta, M.G. Synthesis and In vitro and In silico Anti-inflammatory Activity of New Thiazolidinedione-quinoline Derivatives, Current Topics in Medicinal Chemistry, 2024, 24, 1264-1277. [Google Scholar] [Crossref]
83. Villarroel-Vicente, C.; García, C.; Zibar, K.; Schiel, M.A.; Ferri, J.; Hennuyer, N.; Enriz, D.R.; Staels, B.; Cortes, D.; and Cabedo, N. Synthesis of a new 2-prenylated quinoline as potential drug for metabolic syndrome with pan-PPAR activity and anti-inflammatory effects. Bioorganic & Medicinal Chemistry Letters, 2024, 106(1): 129770. [Google Scholar] [Crossref]
84. Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; and Melaku, Y. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives, Journal of Chemistry, 2020, 24, 2962-2978. [Google Scholar] [Crossref]
85. Abdi, B.; Fekadu, M.; Zeleke, D.; Eswaramoorthy, R.; and Melaku, Y. Synthesis and Evaluation of the Antibacterial and Antioxidant Activities of Some Novel Chloroquinoline Analogs , Journal of Chemistry, 2021, 36, 262-275. [Google Scholar] [Crossref]
86. Asran, M.; El‑Helw, E.A.; Azab, M.E.; Ramadan, S.K.; and Helal, H.M. Synthesis and Antioxidant Activity of some Benzoquinoline-based Heterocycles from 2-((3-Chlorobenzo[f]quinoline-2-yl)methylene)hydrazine-1-carbothioamide, Journal of the Iranian Chemical Society, 2023, 30: 3023-3032. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Development and Evaluation of Floating Alginate Beads of Esomeprazole
- Determination of pKa Value for Ranolazine and Atenolol Using UV Spectroscopy
- The Science of Sustained-Release Medications
- Development of Proteomics in Clinical Medicine
- “Review on Development and Validation of RP-HPLC Method, And Techniques for Vorasidenib in Bulk Drug and Pharmaceutical Dosage Forms”