Glacial Retreat and Water Security: What Are the Long-Term Implications of Glacier Melt in the Tien Shan and Pamir Mountains for Downstream Water Availability in Uzbekistan and Turkmenistan?

Authors

Rakesh Kumar

Murarka College, Sultanganj, TMBU, Bhagalpur (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800253

Subject Category: Environment

Volume/Issue: 12/9 | Page No: 2875-2880

Publication Timeline

Submitted: 2025-09-22

Accepted: 2025-09-28

Published: 2025-10-03

Abstract

The Tien Shan and Pamir mountains serve as critical water towers for Central Asia, supplying meltwater to major rivers like the Amu Darya and Syr Darya, which are vital for downstream countries such as Uzbekistan and Turkmenistan. This review synthesizes recent literature on glacier retreat, revealing substantial mass losses of 14–30% since the mid-20th century, with projections of 45–81% area reduction by the end of the century under high-emission scenarios. Initial melt increases river flows, but long-term declines—potentially 5–31% in annual streamflow by mid-century—threaten irrigation-dependent agriculture, hydropower, and water security in these arid nations. Qualitative impacts include heightened risks of food insecurity, economic losses up to 1.3% of regional GDP annually, and potential geopolitical tensions over transboundary resources. Adaptation strategies, such as improved irrigation efficiency and regional cooperation, are essential but face implementation challenges. This review highlights the urgency for integrated policy responses to mitigate these implications.

Keywords

Glacial Retreat ,Water Security, Long-Term, Tien Shan ,Pamir Mountains

Downloads

References

1. Abou-Shady, A., Siddique, M. S., & Yu, W. (2023). A Critical Review of Innovations and Perspectives for Providing Adequate Water for Sustainable Irrigation [Review of A Critical Review of Innovations and Perspectives for Providing Adequate Water for Sustainable Irrigation]. Water, 15(17), 3023. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/w15173023 [Google Scholar] [Crossref]

2. Ahmad, Z., Altaf, F., Kamp, U., Rahman, F., & Malik, S. M. (2025). Glacier Recession and Climate Change in Chitral, Eastern Hindu Kush Mountains of Pakistan, Between 1992 and 2022. Geosciences, 15(5), 167. https://doi.org/10.3390/geosciences15050167 [Google Scholar] [Crossref]

3. Azimov, U., & Avezova, N. R. (2022). Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply. Renewable and Sustainable Energy Reviews, 167, 112726. https://doi.org/10.1016/j.rser.2022.112726 [Google Scholar] [Crossref]

4. Azizi, A. H., & ASAOKA, Y. (2020). Assessment of the Impact of Climate Change on Snow Distribution and River Flows in a Snow-Dominated Mountainous Watershed in the Western Hindukush–Himalaya, Afghanistan. Hydrology, 7(4), 74. https://doi.org/10.3390/hydrology7040074 [Google Scholar] [Crossref]

5. Berndtsson, R., & Tussupova, K. (2020). The Future of Water Management in Central Asia. Water, 12(8), 2241. https://doi.org/10.3390/w12082241 [Google Scholar] [Crossref]

6. Boer, T. de, Paltán, H., Sternberg, T., & Wheeler, K. (2021). Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin. Water, 13(5), 615. https://doi.org/10.3390/w13050615 [Google Scholar] [Crossref]

7. Bolch, T., Duethmann, D., Wortmann, M., Liu, S., & Disse, M. (2021). Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia). International Journal of Sustainable Development & World Ecology, 29(3), 209. https://doi.org/10.1080/13504509.2021.1943723 [Google Scholar] [Crossref]

8. Cariou, A. (2021). Spatial Impacts of Melting Central Asian Glaciers: Towards a “Water War”? 187. https://doi.org/10.1002/9781119817925.ch9 [Google Scholar] [Crossref]

9. Carleton, T., Crews, L., & Nath, I. (2024). Is the World Running Out of Fresh Water? AEA Papers and Proceedings, 114, 31. https://doi.org/10.1257/pandp.20241008 [Google Scholar] [Crossref]

10. Chen, Y., Li, W., Deng, H., Fang, G., & Li, Z. (2016). Changes in Central Asia’s Water Tower: Past, Present and Future. Scientific Reports, 6(1). https://doi.org/10.1038/srep35458 [Google Scholar] [Crossref]

11. Chen, Y., Li, Z., Fang, G., & Li, W. (2018). Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. Journal of Geophysical Research Atmospheres, 123(10), 5059. https://doi.org/10.1029/2017jd028184 [Google Scholar] [Crossref]

12. Didovets, I., Lobanova, A., Krysanova, V., Menz, C., Babagalieva, Z., Nurbatsina, A., Gavrilenko, N., Khamidov, V., Umirbekov, A., Qodirov, S., Muhyyew, D., & Hattermann, F. F. (2021). Central Asian rivers under climate change: Impacts assessment in eight representative catchments. Journal of Hydrology Regional Studies, 34, 100779. https://doi.org/10.1016/j.ejrh.2021.100779 [Google Scholar] [Crossref]

13. Fallah, B., Didovets, I., Rostami, M., & Hamidi, M. (2024). Climate change impacts on Central Asia: Trends, extremes and future projections. International Journal of Climatology, 44(10), 3191. https://doi.org/10.1002/joc.8519 [Google Scholar] [Crossref]

14. Fu, B. H., Guo, Q., Yan, F., Zhang, J., Shi, P., Ayinuer, M., & Xue, G. (2017). Glacier retreat of the Tian Shan and its impact on the urban growth and environment evaluated from satellite remote sensing data. IOP Conference Series Earth and Environmental Science, 74, 12022. https://doi.org/10.1088/1755-1315/74/1/012022 [Google Scholar] [Crossref]

15. Gan, R., Luo, Y., Zuo, Q., & Sun, L. (2015). Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. Journal of Hydrology, 523, 240. https://doi.org/10.1016/j.jhydrol.2015.01.057 [Google Scholar] [Crossref]

16. Gulakhmadov, A., Chen, X., Gulahmadov, N., Liu, T., Anjum, M. N., & Rizwan, M. (2020). Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water, 12(5), 1426. https://doi.org/10.3390/w12051426 [Google Scholar] [Crossref]

17. Hoelzle, M., Azisov, E., Barandun, M., Huss, M., Farinotti, D., Гафуров, А., Hagg, W., Kenzhebaev, R., Kronenberg, M., Machguth, H., Merkushkin, A., Moldobekov, B., Petrov, M., Saks, T., Salzmann, N., Schöne, T., Tarasov, Y., Usubaliev, R., Vorogushyn, S., … Zemp, M. (2017). Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods and Data Systems, 6(2), 397. https://doi.org/10.5194/gi-6-397-2017 [Google Scholar] [Crossref]

18. Kaliyeva, K., Punys, P., & Zhaparkulova, Y. (2021). The Impact of Climate Change on Hydrological Regime of the Transboundary River Shu Basin (Kazakhstan–Kyrgyzstan): Forecast for 2050. Water, 13(20), 2800. https://doi.org/10.3390/w13202800 [Google Scholar] [Crossref]

19. Kattakulov, F., Artikbekova, F., Gafurov, Z., Jumabaeva, G., & Musulmanov, F. (2021). Consideration of climatic factors in the operating mode of hydraulic facilities in the Amudarya river basin. E3S Web of Conferences, 264, 3068. https://doi.org/10.1051/e3sconf/202126403068 [Google Scholar] [Crossref]

20. KC, K. B., Tzadok, E., & Pant, L. P. (2022). Himalayan ecosystem services and climate change driven agricultural frontiers: a scoping review [Review of Himalayan ecosystem services and climate change driven agricultural frontiers: a scoping review]. Discover Sustainability, 3(1). Springer Nature. https://doi.org/10.1007/s43621-022-00103-9 [Google Scholar] [Crossref]

21. Kulmatov, R., & Khasanov, S. (2023). Contemporary climate change problems in Central Asia. E3S Web of Conferences, 413, 5013. https://doi.org/10.1051/e3sconf/202341305013 [Google Scholar] [Crossref]

22. Luo, Y., Wang, X., Piao, S., Sun, L., Ciais, P., Zhang, Y., Ma, C., Gan, R., & He, C. (2018). Contrasting streamflow regimes induced by melting glaciers across the Tien Shan – Pamir – North Karakoram. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34829-2 [Google Scholar] [Crossref]

23. Muccione, V., & Cassara, M. (2019). The climate-cryosphere-water nexus in central Asia. 8. https://doi.org/10.5167/uzh-181502 [Google Scholar] [Crossref]

24. Narama, C., Kääb, A., Duishonakunov, M., & Abdrakhmatov, K. (2009). Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data. Global and Planetary Change, 71, 42. https://doi.org/10.1016/j.gloplacha.2009.08.002 [Google Scholar] [Crossref]

25. Rakhmatullaev, S., Huneau, F., Coustumer, P. L., Motelica‐Heino, M., & Bakiev, M. (2010). Facts and Perspectives of Water Reservoirs in Central Asia: A Special Focus on Uzbekistan. Water, 2(2), 307. https://doi.org/10.3390/w2020307 [Google Scholar] [Crossref]

26. Rounce, D. R., Hock, R., & Shean, D. (2020). Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00331 [Google Scholar] [Crossref]

27. Shahgedanova, M., Afzal, M., Hagg, W., Kapitsa, V., Kasatkin, N., Mayr, E., Rybak, O., Saidaliyeva, Z., Severskiy, I., Usmanova, Z., Wade, A. J., Yaitskaya, N., & Zhumabayev, D. (2020). Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia. Water, 12(3), 627. https://doi.org/10.3390/w12030627 [Google Scholar] [Crossref]

28. Shokory, J. A. N., Horton, P., Schaefli, B., & Lane, S. N. (2025). Glacier-influenced hydrological regimes in the Afghanistan Hindu Kush Himalaya under current and future climate. Hydrology Research. https://doi.org/10.2166/nh.2025.082 [Google Scholar] [Crossref]

29. Stucker, D., Kazbekov, J., Yakubov, M., & Wegerich, K. (2012). Climate Change in a Small Transboundary Tributary of the Syr Darya Calls for Effective Cooperation and Adaptation. Mountain Research and Development, 32(3), 275. https://doi.org/10.1659/mrd-journal-d-11-00127.1 [Google Scholar] [Crossref]

30. Su, F., Pritchard, H. D., Yao, T., Huang, J., Ou, T., Meng, F., Sun, H., Li, Y., Xu, B., Zhu, M., & Chen, D. (2022). Contrasting Fate of Western Third Pole’s Water Resources Under 21st Century Climate Change. Earth s Future, 10(9). https://doi.org/10.1029/2022ef002776 [Google Scholar] [Crossref]

31. Vanham, D., Alfieri, L., & Feyen, L. (2022). National water shortage for low to high environmental flow protection. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06978-y [Google Scholar] [Crossref]

32. Wang, X., Chen, Y., Fang, G., Li, Z., & Liu, Y. (2022). The growing water crisis in Central Asia and the driving forces behind it. Journal of Cleaner Production, 378, 134574. https://doi.org/10.1016/j.jclepro.2022.134574 [Google Scholar] [Crossref]

33. Zin, E. N., Inoue, N., & Uenishi, Y. (2025). The Food Water Energy Nexus in Agriculture: Understanding Regional Challenges and Practices to Sustainability. Sustainability, 17(10), 4428. https://doi.org/10.3390/su17104428 [Google Scholar] [Crossref]

34. Zou, S., Abuduwaili, J., Duan, W., Maeyer, P. D., & Voorde, T. V. de. (2019). Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia. Sustainability, 11(11), 3084. https://doi.org/10.3390/su11113084 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles