Kinematic Constraints On Brown Dwarf Atmospheric Variability And Evidence For Bimodal Formation From Multi-Survey Analysis
Authors
Bansal Junior College Nizamabad (India)
Article Information
DOI: 10.51244/IJRSI.2025.120800280
Subject Category: Physics
Volume/Issue: 12/9 | Page No: 3096-3104
Publication Timeline
Submitted: 2025-09-23
Accepted: 2025-09-28
Published: 2025-10-04
Abstract
We present a comprehensive analysis of 2,345 spectroscopically confirmed L and T dwarfs combining photometric data from SDSS DR16, 2MASS, WISE, and astrometric measurements from Gaia EDR3. Our investigation addresses two fundamental questions regarding brown dwarf populations: the relationship between atmospheric variability and galactic kinematics, and the underlying mass distribution revealing formation mechanisms.
Through Monte Carlo simulations incorporating the BT-Settl atmospheric models, we demonstrate that metallicity variations arising from galactic chemical evolution should produce measurable dif- ferences in near-infrared variability amplitudes as a function of tangential velocity. We predict that brown dwarfs with vtan > 80 km s−1 will exhibit variability amplitudes reduced by a factor of 2.3 ± 0.4 compared to thin disk members, driven by decreased cloud opacity at sub-solar metallicities. This prediction is testable with current JWST monitoring programs.
Analysis of the mass function reveals a statistically significant (4.7σ) deficit of objects in the 0.030 −0.075 M⊙ range relative to log-normal extrapolation from the stellar regime. The distribution exhibits a broken power law with ξ(M ) ∝ M −0.3±0.2 for M > 0.075 M⊙ and ξ(M ) ∝ M −1.4±0.3 for M <0.030 M⊙. This bimodality strongly suggests distinct formation channels: turbulent fragmentation dominating above the gap and disk instability with subsequent dynamical ejection below it.
Keywords
brown dwarfs, low-mass, atmospheres, kinematics and dynamics, luminosity function, mass function
Downloads
References
1. Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872, doi: 10.1086/321540 [Google Scholar] [Crossref]
2. Ahumada, R., et al. 2020, ApJS, 249, 3, doi: 10.3847/1538-4365/ab929e [Google Scholar] [Crossref]
3. Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71, doi: 10.1051/0006361/201322631 [Google Scholar] [Crossref]
4. Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Reviews of Modern Physics, 73, 719, doi: 10.1103/RevModPhys.73.719 [Google Scholar] [Crossref]
5. Casagrande, L., Schonrich, R., Asplund, M., Et Al. 2011, A&A, 530, A138, Doi: 10.1051/0004-6361/201016276 Chabrier, G. 2000, Apj, 554, 1274, Doi: 10.1086/321401 [Google Scholar] [Crossref]
6. Gaia Collaboration, Brown, A. G. A., et al. 2021, A&A, 649, A1, doi: 10.1051/0004-6361/202039657 [Google Scholar] [Crossref]
7. Hayashi, C., & Nakano, T. 1963, Progress of Theoretical Physics, 30, 460, doi: 10.1143/PTP.30.460 [Google Scholar] [Crossref]
8. Kirkpatrick, J. D. 2005, ARA&A, 43, 195,doi:10.1146/annurev.astro.42.053102.134017 [Google Scholar] [Crossref]
9. Kumar, S. S. 1963, ApJ, 137, 1121, doi: 10.1086/147589 [Google Scholar] [Crossref]
10. Morley, C. V., Fortney, J. J., Marley, M. S., et al. 2012, ApJ, 756, 172, doi: 10.1088/0004-637X/756/2/172 [Google Scholar] [Crossref]
11. Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., et al. 1995, Nature, 378, 463, doi: 10.1038/378463a0 [Google Scholar] [Crossref]
12. Rebolo, R., Zapatero Osorio, M. R., & Mart´ın, E. L. 1995, Nature, 377, 129, doi: 10.1038/377129a0 [Google Scholar] [Crossref]
13. Saumon, D., & Marley, M. S. 2008, ApJ, 689, 1327, doi: 10.1086/592734 [Google Scholar] [Crossref]
14. Skrutskie, M. F., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708 [Google Scholar] [Crossref]
15. Wright, E. L., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868 [Google Scholar] [Crossref]