Routine Albuminuria Screening Improves Cardiovascular Outcomes in Diabetes Patients- A Single Centre Randomised Controlled Study.

Authors

Md Kamran Khan

Angika Clinic, Bhagalpur Nidan Kutir Diabetes Care & Research Centre, Bhagalpur, Bihar (India)

Prof. Devendra Pd Singh

Angika Clinic, Bhagalpur Nidan Kutir Diabetes Care & Research Centre, Bhagalpur, Bihar (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800282

Subject Category: Public Health

Volume/Issue: 12/9 | Page No: 3135-3143

Publication Timeline

Submitted: 2025-09-24

Accepted: 2025-09-30

Published: 2025-10-06

Abstract

Background: Albuminuria is a well-established biomarker of chronic kidney disease (CKD) progression and a significant predictor of cardiovascular disease (CVD) risk, reflecting systemic vascular dysfunction, including myocardial capillary disease and arterial stiffness. Elevated urinary albumin excretion is linked to increased risks of coronary artery disease, stroke, heart failure, arrhythmias, and microvascular complications. Despite the availability of albuminuria-lowering therapies that reduce cardiovascular risk, screening remains underutilized. This study investigates the impact of routine albuminuria screening and targeted management on cardiovascular outcomes in a multidisciplinary diabetes care setting.
Methods: This randomized controlled trial, conducted at Nidan Kutir Diabetes Care & Research Centre, Bhagalpur from 2022 to 2024, enrolled 735 patients with established CVD and no prior CKD diagnosis. Participants were randomized to either a structured albuminuria screening and management protocol (intervention group, n=368) or standard care (control group, n=367). The intervention group underwent quarterly urinary albumin-to-creatinine ratio (UACR) assessments, with albuminuria-lowering therapies (e.g., SGLT2 inhibitors, ACE inhibitors, or ARBs) initiated or optimized based on UACR levels. The primary endpoint was a composite of major adverse cardiovascular events (MACE), including myocardial infarction, stroke, heart failure hospitalization, and cardiovascular death, over the 2-year study period. Secondary endpoints included changes in UACR, estimated glomerular filtration rate (eGFR), and microvascular complications.
Results: The intervention group demonstrated a significant reduction in MACE compared to the control group (hazard ratio [HR] 0.69, 95% CI 0.54–0.87, p=0.002). UACR levels decreased by 25% in the intervention group (p<0.001), with improved eGFR stability and a lower incidence of microvascular complications. Subgroup analyses indicated greater benefits in patients with baseline UACR ≥30 mg/g. Adverse events, such as hypotension and hyperkalemia, were similar across groups. Conclusion: Routine albuminuria screening and targeted management in a diabetes-focused setting significantly reduce cardiovascular risk and slow CKD progression in patients with CVD. These findings highlight the value of integrating albuminuria surveillance into multidisciplinary diabetes care to optimize patient outcomes.

Keywords

Albuminuria, cardiovascular disease, chronic kidney disease, urinary albumin-to-creatinine ratio, diabetes, screening, multidisciplinary management, SGLT2 inhibitors, ACE inhibitors, major adverse cardiovascular events, microvascular complications

Downloads

References

1. Tuttle, K. R., Bakris, G. L., Bilous, R. W., et al. (2014). Diabetic kidney disease: A report from an ADA Consensus Conference. Diabetes Care, 37(10), 2864–2883. [Google Scholar] [Crossref]

2. Gerstein, H. C., Mann, J. F., Yi, Q., et al. (2001). Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA, 286(4), 421–426. [Google Scholar] [Crossref]

3. Unnikrishnan, R., Anjana, R. M., & Mohan, V. (2017). Diabetes mellitus and its complications in India. Nature Reviews Endocrinology, 13(6), 317–318. [Google Scholar] [Crossref]

4. Rajapurkar, M. M., John, G. T., Kirpalani, A. L., et al. (2012). What do we know about chronic kidney disease in India: First report of the Indian CKD registry. BMC Nephrology, 13, 10. [Google Scholar] [Crossref]

5. Deckert, T., Feldt-Rasmussen, B., Borch-Johnsen, K., et al. (1989). Albuminuria reflects widespread vascular damage: The Steno hypothesis. Diabetologia, 32(4), 219–226. [Google Scholar] [Crossref]

6. Satchell, S. (2012). The glomerular endothelium in diabetic nephropathy: Role in albuminuria and therapeutic implications. Nature Reviews Nephrology, 8(11), 637–646. [Google Scholar] [Crossref]

7. Prasad, R., Jha, V., & Kumar, V. (2019). Arterial stiffness and cardiovascular risk in Indian patients with chronic kidney disease. Indian Journal of Nephrology, 29(3), 182–187. [Google Scholar] [Crossref]

8. International Diabetes Federation. (2019). IDF Diabetes Atlas, 9th edition. Brussels: International Diabetes Federation. [Google Scholar] [Crossref]

9. Perkovic, V., Jardine, M. J., Neal, B., et al. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New England Journal of Medicine, 380(24), 2295–2306. [Google Scholar] [Crossref]

10. Heerspink, H. J. L., Stefánsson, B. V., Correa-Rotter, R., et al. (2020). Dapagliflozin in patients with chronic kidney disease. New England Journal of Medicine, 383(15), 1436–1446. [Google Scholar] [Crossref]

11. Brenner, B. M., Cooper, M. E., de Zeeuw, D., et al. (2001). Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New England Journal of Medicine, 345(12), 861–869. [Google Scholar] [Crossref]

12. Bakris, G. L., Agarwal, R., Anker, S. D., et al. (2020). Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. New England Journal of Medicine, 383(23), 2219–2229. [Google Scholar] [Crossref]

13. Kumar, V., Yadav, A. K., Sethi, J., et al. (2019). The Indian Chronic Kidney Disease (ICKD) study: Baseline characteristics. Clinical Kidney Journal, 14(1), 280–285. [Google Scholar] [Crossref]

14. KDIGO. (2020). KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney International Supplements, 98(4S), S1–S115. [Google Scholar] [Crossref]

15. John, O., Tewari, A., & Jha, V. (2018). Challenges of managing chronic kidney disease in India. Indian Journal of Nephrology, 28(1), 1–5. [Google Scholar] [Crossref]

16. Jha, V., Garcia-Garcia, G., Iseki, K., et al. (2013). Chronic kidney disease: Global dimension and perspectives. The Lancet, 382(9888), 260–272. [Google Scholar] [Crossref]

17. Mohan, V., Deepa, M., Farooq, S., et al. (2018). Prevalence, awareness, and control of hypertension in Chennai – The Chennai Urban Rural Epidemiology Study (CURES-52). Journal of the Association of Physicians of India, 56, 541–546. [Google Scholar] [Crossref]

18. Perkovic, V., et al. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New England Journal of Medicine, 380(24), 2295–2306. https://doi.org/10.1056/NEJMoa1811744 [Google Scholar] [Crossref]

19. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: Analysis of potential mechanisms. J Am Soc Nephrol. 2006;17(8):2106-2111. doi:10.1681/ASN.2005121288 [Google Scholar] [Crossref]

20. Yuyun MF, Adler AI, Wareham NJ. What is the evidence that microalbuminuria is a predictor of cardiovascular disease events? Curr Opin Nephrol Hypertens. 2005;14(3):255-260. doi:10.1097/01.mnh.0000165893.48258.22 [Google Scholar] [Crossref]

21. Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421-426. doi:10.1001/jama.286.4.421 [Google Scholar] [Crossref]

22. Rein P, Vonbank A, Saely CH, et al. Relation of albuminuria to angiographically determined coronary arterial narrowing in patients with and without type 2 diabetes mellitus. Am J Cardiol. 2011;107(8):1141-1145. doi:10.1016/j.amjcard.2010.12.008 [Google Scholar] [Crossref]

23. Kim BJ, Kim BS, Kang JH, et al. Association of albuminuria with coronary artery calcium score in asymptomatic adults: A Korean nationwide study. Atherosclerosis. 2017;263:278-283. doi:10.1016/j.atherosclerosis.2017.06.919 [Google Scholar] [Crossref]

24. Rutter MK, McComb JM, Brady S, Marshall SM. Silent myocardial ischemia and microalbuminuria in asymptomatic subjects with non-insulin-dependent diabetes mellitus. Am J Cardiol. 1999;83(1):27-31. doi:10.1016/s0002-9149(98)00778-0 [Google Scholar] [Crossref]

25. Sezer M, Kocaaga M, Aslanger E, et al. Association of microalbuminuria with coronary collateral vessel development in patients with chronic total occlusion. Angiology. 2016;67(6):552-557. doi:10.1177/0003319715596144 [Google Scholar] [Crossref]

26. Marui A, Kimura T, Nishiwaki N, et al. Comparison of five-year outcomes of coronary artery bypass grafting versus percutaneous coronary intervention in patients with microalbuminuria. Eur J Cardiothorac Surg. 2014;46(4):604-609. doi:10.1093/ejcts/ezu030 [Google Scholar] [Crossref]

27. Liu Y, Gao Y, Li X, et al. Impact of microalbuminuria on long-term outcomes following coronary artery bypass grafting. Heart Lung Circ. 2015;24(5):484-489. doi:10.1016/j.hlc.2014.11.018 [Google Scholar] [Crossref]

28. Tanaka M, Fukui M, Tanaka M, et al. Albuminuria and progression of coronary artery calcification in a general population: A 5-year follow-up study. Int J Cardiol. 2018;268:27-31. doi:10.1016/j.ijcard.2018.03.104 [Google Scholar] [Crossref]

29. Santos IS, Bittencourt MS, Goulart AC, et al. Albuminuria and coronary artery calcification in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Am J Kidney Dis. 2019;74(2):195-203. doi:10.1053/j.ajkd.2018.12.036 [Google Scholar] [Crossref]

30. Stehouwer CD, Nauta JJ, Zeldenrust GC, et al. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet. 1992;340(8815):319-323. doi:10.1016/0140-6736(92)91401-o [Google Scholar] [Crossref]

31. 14. Festa A, D’Agostino R Jr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42-47. doi:10.1161/01.cir.102.1.42 [Google Scholar] [Crossref]

32. Barzilay JI, Peterson D, Cushman M, et al. The relationship of cardiovascular risk factors to microalbuminuria in older adults with and without diabetes mellitus or hypertension: The Cardiovascular Health Study. Am J Kidney Dis. 2004;44(1):25-34. doi:10.1053/j.ajkd.2004.03.021 [Google Scholar] [Crossref]

33. Myhre P, Melsom T, Eriksen BO, et al. Association of albuminuria with subclinical atherosclerosis in the general population: The Tromsø Study. Nephrol Dial Transplant. 2020;35(6):1031-1039. doi:10.1093/ndt/gfy316 [Google Scholar] [Crossref]

34. Lee M, Saver JL, Chang KH, et al. Impact of microalbuminuria on incident stroke: A meta-analysis. Stroke. 2010;41(11):2625-2631. doi:10.1161/STROKEAHA.110.581215 [Google Scholar] [Crossref]

35. Masson P, Webster AC, Craig JC, et al. Albuminuria and stroke risk: A meta-analysis of prospective studies. Nephrology (Carlton). 2017;22(10):752-759. doi:10.1111/nep.12858 [Google Scholar] [Crossref]

36. Cohort Study Group. Urinary albumin-to-creatinine ratio and cardiovascular outcomes in high-risk populations. Eur Heart J. 2024;45(6):789–799. [Google Scholar] [Crossref]

37. National Health and Nutrition Examination Survey Group. Albuminuria prevalence in heart failure: A cross-sectional analysis. Am J Kidney Dis. 2014;64(3):321–328. [Google Scholar] [Crossref]

38. ARIC Study Group. Albuminuria and atrial fibrillation prevalence in a community-based cohort. Heart Rhythm. 2023;20(8):1123–1130. [Google Scholar] [Crossref]

39. Cohort Study Group. Urinary albumin-to-creatinine ratio and cardiovascular outcomes in high-risk populations. Eur Heart J. 2024;45(6):789–799. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles