Integrating Digital Adherence Tools in TB Care: Comparing GRVOTS with Standard DOT in Malaysia

Authors

Ahmad Amirul Shafiq Mohd

Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor (Malaysia)

Nurhuda Ismail

Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor (Malaysia)

Leny Suzana Suddin

Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor (Malaysia)

Article Information

DOI: 10.51244/IJRSI.2025.12110075

Subject Category: Public Health

Volume/Issue: 12/11 | Page No: 832-838

Publication Timeline

Submitted: 2025-11-21

Accepted: 2025-11-27

Published: 2025-12-09

Abstract

Tuberculosis (TB) remains a significant global health challenge, with Malaysia experiencing persistent mortality despite declining incidence rates. This study aimed to assess treatment adherence among patients with pulmonary TB (PTB) diagnosed and managed using traditional directly observed treatment (DOT) and gamified reality video-observed treatment systems (GRVOTS) in public healthcare facilities. A cross-sectional study was conducted in five health clinics in Selangor and Negeri Sembilan, Malaysia. The participants included 142 patients with PTB aged between 18 and 64 years, matched by age and capable of smartphone use, with data sourced from the Tuberculosis Information System (TBIS) and an existing GRVOTS research team. Sociodemographic and treatment adherence data were analyzed using descriptive statistical methods using IBM SPSS software version 28.0. Approximately 90.1% of patients in the GRVOTS group completed treatment compared with 83.3% in the DOT group, indicating significantly higher adherence to GRVOTS. Facility characteristics varied widely, from large urban clinics with robust digital infrastructure to smaller clinics with limited resources, highlighting the adaptability of GRVOTS across diverse settings. Overall, GRVOTS demonstrates potential as an effective and scalable adjunct to traditional TB treatment supervision, enhancing adherence and continuity of care across various healthcare settings. Thus, digital tuberculosis (TB) adherence solutions should match clinic capacity and patient demographics. Large clinics should implement comprehensive digital tools, whereas smaller facilities require simpler versions.

Keywords

Pulmonary Tuberculosis, Gamified Reality

Downloads

References

1. Bagcchi, S. (2023). WHO's global tuberculosis report 2022. The Lancet Microbe, 4(1), e20. [Google Scholar] [Crossref]

2. Cantwell, M. F., McKenna, M. T., McCray, E., & Onorato, I. M. (1998). Tuberculosis and race/ethnicity in the United States: impact of socioeconomic status. American journal of respiratory and critical care medicine, 157(4), 1016-1020. [Google Scholar] [Crossref]

3. Cattamanchi, A., Crowder, R., Kityamuwesi, A., Kiwanuka, N., Lamunu, M., Namale, C., Tinka, L. K., Nakate, A. S., Ggita, J., & Turimumahoro, P. (2021). Digital adherence technology for tuberculosis treatment supervision: A stepped-wedge cluster-randomized trial in Uganda. PLoS medicine, 18(5), e1003628. [Google Scholar] [Crossref]

4. Centre, H. I. (2022). Health Facts 2022. https://hq.moh.gov.my/perancangan/blog/utama/healthcare-facts-2022/ [Google Scholar] [Crossref]

5. Chikovore, J., Pai, M., Horton, K. C., Daftary, A., Kumwenda, M. K., Hart, G., & Corbett, E. L. (2020). Missing men with tuberculosis: the need to address structural influences and implement targeted and multidimensional interventions. BMJ global health, 5(5). [Google Scholar] [Crossref]

6. Coetzee, D., Hilderbrand, K., Goemaere, E., Matthys, F., & Boelaert, M. (2004). Integrating tuberculosis and HIV care in the primary care setting in South Africa. Tropical Medicine & International Health, 9(6), A11-A15. [Google Scholar] [Crossref]

7. Fuady, A., Houweling, T. A., & Richardus, J. H. (2020). COVID-19 and tuberculosis-related catastrophic costs. The American Journal of Tropical Medicine and Hygiene, 104(2), 436. [Google Scholar] [Crossref]

8. Garfein, R. S., & Doshi, R. P. (2019). Synchronous and asynchronous video observed therapy (VOT) for tuberculosis treatment adherence monitoring and support. Journal of clinical tuberculosis and other mycobacterial diseases, 17, 100098. [Google Scholar] [Crossref]

9. Getachew, E., Woldeamanuel, Y., & Manyazewal, T. (2022). Capacity and readiness assessment of healthcare facilities for digital health interventions against tuberculosis and HIV in Addis Ababa, Ethiopia. Frontiers in Digital Health, 4, 821390. [Google Scholar] [Crossref]

10. Guo, P., Qiao, W., Sun, Y., Liu, F., & Wang, C. (2020). Telemedicine technologies and tuberculosis management: a randomized controlled trial. Telemedicine and e-Health, 26(9), 1150-1156. [Google Scholar] [Crossref]

11. Kalonji, D., & Mahomed, O. H. (2019). Health system challenges affecting HIV and tuberculosis integration at primary healthcare clinics in Durban, South Africa. African Journal of Primary Health Care and Family Medicine, 11(1), 1-7. [Google Scholar] [Crossref]

12. Keluarga, B. P. K. (2019). Klasifikasi Klinik Kesihatan. Ministry of Health. Retrieved 21 November from https://hq.moh.gov.my/bpkk/index.php/klasifikasi-klinik-kesihatan [Google Scholar] [Crossref]

13. Khachadourian, V., Truzyan, N., Harutyunyan, A., Petrosyan, V., Davtyan, H., Davtyan, K., van Den Boom, M., & Thompson, M. E. (2020). People–centred care versus clinic–based DOT for continuation phase TB treatment in Armenia: a cluster randomized trial. BMC Pulmonary Medicine, 20(1), 105. [Google Scholar] [Crossref]

14. Mohamed, M. S., Zary, M., Kafie, C., Chilala, C. I., Bahukudumbi, S., Foster, N., Gore, G., Fielding, K., Subbaraman, R., & Schwartzman, K. (2024). The impact of digital adherence technologies on health outcomes in tuberculosis: a systematic review and meta-analysis. medRxiv, 2024.2001. 2031.24302115. [Google Scholar] [Crossref]

15. Müller, A., Osório, C., Silva, D., Sbruzzi, G., De Tarso, P., & Dalcin, R. (2018). Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis. The International Journal of Tuberculosis and Lung Disease, 22(7), 731-740. [Google Scholar] [Crossref]

16. Natarajan, A., Beena, P. M., Devnikar, A. V., & Mali, S. (2020). A systemic review on tuberculosis. Indian Journal of Tuberculosis, 67(3), 295-311. [Google Scholar] [Crossref]

17. World Health Organization (2017). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. W. H. Organization. https://iris.who.int/handle/10665/255052 [Google Scholar] [Crossref]

18. Patel, D., Berger, C. A., Kityamuwesi, A., Ggita, J., Tinka, L. K., Turimumahoro, P., Feler, J., Chehab, L., Chen, A. Z., & Gupta, N. (2020). Iterative adaptation of a tuberculosis digital medication adherence technology to meet user needs: qualitative study of patients and health care providers using human-centered design methods. JMIR Formative Research, 4(12), e19270. [Google Scholar] [Crossref]

19. Pradipta, I. S., Houtsma, D., van Boven, J. F., Alffenaar, J.-W. C., & Hak, E. (2020). Interventions to improve medication adherence in tuberculosis patients: a systematic review of randomized controlled studies. NPJ primary care respiratory medicine, 30(1), 21. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles