Design of a Persistent Aerial Relay Node (PARN)
Authors
UG Student, Department of Electronics & Communication Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur 613403, Tamil Nadu (India)
UG Student, Department of Electronics & Communication Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur 613403, Tamil Nadu (India)
UG Student, Department of Electronics & Communication Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur 613403, Tamil Nadu (India)
Assistant Professor, Department of Electronics & Communication Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur 613403, Tamil Nadu (India)
UG Student, Department of Computer Science & Engineering, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur 613403, Tamil Nadu (India)
Article Information
DOI: 10.51244/IJRSI.2025.12110083
Subject Category: Communication
Volume/Issue: 12/11 | Page No: 899-912
Publication Timeline
Submitted: 2025-11-27
Accepted: 2025-12-04
Published: 2025-12-09
Abstract
This paper presents a focused investigation into advanced computational and architectural strategies that enable Unmanned Aerial Vehicles (UAVs) to function as Persistent Relay Nodes (PRNs) in disaster-affected regions where terrestrial communication networks often fail. During large-scale emergencies, long-endurance aerial communication relays become essential; however, conventional battery-powered UAVs are unable to meet these endurance requirements. To address this gap, the study introduces the Persistent Aerial Relay Node (PARN), a Tethered UAV (T-UAV) platform designed to provide uninterrupted communication capability through a hybrid power architecture. The system integrates continuous high-voltage tethered power with a 6S 8000 mAh LiPo emergency battery, ensuring operational resilience during unexpected tether failures.
Keywords
Persistent Relay Node, Unmanned Aerial Vehicle, Disaster Communication
Downloads
References
1. Tran, D., Nguyen, V., Gautam, S., Chatzinotas, S., Vu, T., & Ottersten, B. (2020). UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation & Trajectory Optimization. IEEE Transactions on Wireless Communications, 21, 1621-1637. https://doi.org/10.1109/twc.2021.3105821. [Google Scholar] [Crossref]
2. Tran, D., Nguyen, V., Gautam, S., Chatzinotas, S., Vu, T., & Ottersten, B. (2020). Resource Allocation for UAV Relay-Assisted IoT Communication Networks. 2020 IEEE Globecom Workshops (GC Wkshps, 1-7. https://doi.org/10.1109/gcwkshps50303.2020.9367522. [Google Scholar] [Crossref]
3. Samir, M., Sharafeddine, S., Assi, C., Nguyen, T., & Ghrayeb, A. (2020). UAV Trajectory Planning for Data Collection from Time-Constrained IoT Devices. IEEE Transactions on Wireless Communications, 19, 34-46. https://doi.org/10.1109/twc.2019.2940447. [Google Scholar] [Crossref]
4. Nguyen, V., Sharma, S., Vu, T., Chatzinotas, S., & Ottersten, B. (2021). Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks. IEEE Internet of Things Journal, 8, 3394-3409. https://doi.org/10.1109/jiot.2020.3022534. [Google Scholar] [Crossref]
5. Do-Duy, T., Nguyen, L., Duong, T., Khosravirad, S., & Claussen, H. (2021). Joint Optimisation of Real-Time Deployment & Resource Allocation for UAV-Aided Disaster Emergency Communications. IEEE Journal on Selected Areas in Communications, 39, 3411-3424. https://doi.org/10.1109/jsac.2021.3088662. [Google Scholar] [Crossref]
6. Tran, D., Nguyen, V., Gautam, S., Chatzinotas, S., Vu, T., & Ottersten, B. (2020). UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation & Trajectory Optimization. IEEE Transactions on Wireless Communications, 21, 1621-1637. https://doi.org/10.1109/twc.2021.3105821. [Google Scholar] [Crossref]
7. Zhang, T., Lei, J., Liu, Y., Feng, C., & Nallanathan, A. (2021). Trajectory Optimization for UAV Emergency Communication With Limited User Equipment Energy: A Safe-DQN Approach. IEEE Transactions on Green Communications & Networking, 5, 1236-1247. https://doi.org/10.1109/tgcn.2021.3068333. [Google Scholar] [Crossref]
8. Zhang, Z., Wang, Y., Luo, Y., Zhang, H., Zhang, X., & Ding, W. (2024). Iterative Trajectory Planning & Resource Allocation for UAV-Assisted Emergency Communication with User Dynamics. Drones. https://doi.org/10.3390/drones8040149. [Google Scholar] [Crossref]
9. Hydher, H., Jayakody, D., Hemach&ra, K., & Samarasinghe, T. (2020). Intelligent UAV Deployment for a Disaster-Resilient Wireless Network. Sensors (Basel, Switzerl&), 20. https://doi.org/10.3390/s20216140. [Google Scholar] [Crossref]
10. Solati, A., Moghaddam, J., & Ardebilipour, M. (2024). Enhancing Disaster Communication: Multi-UAV Optimization for Efficient Coverage. 2024 32nd International Conference on Electrical Engineering (ICEE), 1-5. https://doi.org/10.1109/icee63041.2024.10668219. [Google Scholar] [Crossref]
11. 1.Solanki, S., Gautam, S., Sharma, S., & Chatzinotas, S. (2022). Ambient Backscatter Assisted Co-Existence in Aerial-IRS Wireless Networks. IEEE Open Journal of the Communications Society, 3, 608-621. https://doi.org/10.1109/ojcoms.2022.3163574. [Google Scholar] [Crossref]
12. Ji, B., Li, Y., Zhou, B., Li, C., Song, K., & Wen, H. (2019). Performance Analysis of UAV Relay Assisted IoT Communication Network Enhanced With Energy Harvesting. IEEE Access, 7, 38738-38747. https://doi.org/10.1109/access.2019.2906088. [Google Scholar] [Crossref]
13. Wu, G., Gao, X., & Wan, K. (2020). Mobility Control of Unmanned Aerial Vehicle as Communication Relay to Optimize Ground-to-Air Uplinks. Sensors (Basel, Switzerl&), 20. https://doi.org/10.3390/s20082332. [Google Scholar] [Crossref]
14. Ahmed, S., Chowdhury, M., & Jang, Y. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24, 849-852. https://doi.org/10.1109/lcomm.2020.2965120. [Google Scholar] [Crossref]
15. Nzekwu, N., Fern&es, M., Fern&es, G., Monteiro, P., & Guiomar, F. (2024). A Comprehensive Review of UAV-Assisted FSO Relay Systems. Photonics. https://doi.org/10.3390/photonics11030274. [Google Scholar] [Crossref]
16. Ch&rasekharan, S., Gomez, K., Al-Hourani, A., Sithamparanathan, K., Rasheed, T., Goratti, L., Reynaud, L., Grace, D., Bucaille, I., Wirth, T., & Allsopp, S. (2016). Designing & implementing future aerial communication networks. IEEE Communications Magazine,54,26-34. https://doi.org/10.1109/mcom.2016.7470932. [Google Scholar] [Crossref]
17. Choi, C. (2024). Leveraging Aerial Platforms for Downlink Communications in Sparse Satellite Networks. IEEE Internet of Things Journal, 12, 9805-9820. https://doi.org/10.1109/jiot.2024.3509724. [Google Scholar] [Crossref]
18. Arum, S., Grace, D., & Mitchell, P. (2020). A review of wireless communication using high-altitude platforms for extended coverage & capacity. Comput. Commun., 157, 232-256. https://doi.org/10.1016/j.comcom.2020.04.020. [Google Scholar] [Crossref]
19. Shakhatreh, H., Alenezi, A., Sawalmeh, A., Almutiry, M., & Malkawi, W. (2021). Efficient Placement of an Aerial Relay Drone for Throughput Maximization. Wirel. Commun. Mob. Comput., 2021, 5589605:1-5589605:11. https://doi.org/10.1155/2021/5589605. [Google Scholar] [Crossref]
20. Belmekki, B., & Alouini, M. (2022). Unleashing the Potential of Networked Tethered Flying Platforms: Prospects, Challenges, & Applications. IEEE Open Journal of Vehicular Technology, 3, 278-320. https://doi.org/10.1109/ojvt.2022.3177946. [Google Scholar] [Crossref]
21. Dao, N., Pham, V., Tu, N., Thanh, T., Bao, V., Lakew, D., & Cho, S. (2021). Survey on Aerial Radio Access Networks: Toward a Comprehensive 6G Access Infrastructure. IEEE Communications Surveys & Tutorials, 23, 1193-1225. https://doi.org/10.1109/comst.2021.3059644. [Google Scholar] [Crossref]
22. Yadav, P., Upadhyay, A., Prasath, V., Ali, Z., & Khare, B. (2021). Evolution of Wireless Communications with 3G, 4G, 5G, & Next Generation Technologies in India. , 355-359. https://doi.org/10.1007/978-981-15-8752-8_35. [Google Scholar] [Crossref]
23. Oughton, E., Lehr, W., Katsaros, K., Selinis, I., Bubley, D., & Kusuma, J. (2020). Revisiting Wireless Internet Connectivity: 5G vs Wi-Fi 6. ArXiv, abs/2010.11601. https://doi.org/10.1016/j.telpol.2021.102127. [Google Scholar] [Crossref]
24. Ezhilarasan, E., & Dinakaran, M. (2017). A Review on Mobile Technologies: 3G, 4G & 5G. 2017 Second International Conference on Recent Trends & Challenges in Computational Models (ICRTCCM), 369-373. https://doi.org/10.1109/icrtccm.2017.90. [Google Scholar] [Crossref]
25. Dangi, R., Lalwani, P., Choudhary, G., You, I., & Pau, G. (2021). Study & Investigation on 5G Technology: A Systematic Review. Sensors (Basel, Switzerl&), 22. https://doi.org/10.3390/s22010026. [Google Scholar] [Crossref]
26. Hao, Y. (2021). Investigation & Technological Comparison of 4G & 5G Networks. Journal of Computer & Communications. https://doi.org/10.4236/jcc.2021.91004. [Google Scholar] [Crossref]
27. AravindanM., K., Yadav, D., & Sony, A. (2024). A Comparative Analysis of Wi-Fi & Cellular Networks in the Era of 5G. 2024 15th International Conference on Computing Communication & Networking Technologies (ICCCNT), 1-6. https://doi.org/10.1109/icccnt61001.2024.10724338. [Google Scholar] [Crossref]
28. Trrad, I. (2025). 5G & Beyond: Evolution of Wireless Communication Technologies. 2025 International Conference on Frontier Technologies & Solutions (ICFTS), 1-9. https://doi.org/10.1109/icfts62006.2025.11031933. [Google Scholar] [Crossref]
29. Kumar, A., Yadav, A., Gill, S., Pervaiz, H., Ni, Q., & Buyya, R. (2022). A secure drone-to-drone communication & software defined drone network-enabled traffic monitoring system. Simul. Model. Pract. Theory, 120, 102621. https://doi.org/10.1016/j.simpat.2022.102621. [Google Scholar] [Crossref]
30. Kumar, A., Yadav, A., Gill, S., Pervaiz, H., Ni, Q., & Buyya, R. (2022). A secure drone-to-drone communication & software defined drone network-enabled traffic monitoring system. Simul. Model. Pract. Theory, 120, 102621. https://doi.org/10.1016/j.simpat.2022.102621. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Communication Strategies among Promoters During MATTA Fair 2025
- An Examination of Colleen Ballinger’s Experience in Social Media: Cancel Culture Chronicle
- Communication Patterns in Conflict Interactions in Premarital Couples Who Are in Abusive Relationships
- Social Media Use on Mental Health Outcomes among Adolescents and Young Adults in Port Harcourt City
- (Un)Successful Error Repairs in L2 Communication