Multivariate Monitoring of Gross Domestic Product and Inflation Rate in Ghana

Authors

Mutala Mohammed

Department of Statistics and Actuarial Science, C.K. Tedam University of Technology and Applied Sciences (Ghana)

Wahab Mashud

Department of Statistics and Actuarial Science, C.K. Tedam University of Technology and Applied Sciences (Ghana)

Abu Ibrahim Azebre

Department of Statistics and Actuarial Science, C.K. Tedam University of Technology and Applied Sciences (Ghana)

Article Information

DOI: 10.51244/IJRSI.2025.12110089

Subject Category: Social science

Volume/Issue: 12/11 | Page No: 956-981

Publication Timeline

Submitted: 2025-10-07

Accepted: 2025-10-12

Published: 2025-12-09

Abstract

Multivariate control charts are statistical tools increasingly used for the simultaneous monitoring of multiple interrelated variables. This study applied Hotelling T², multivariate cumulative sum (MCUSUM), and multivariate exponentially weighted moving average (MEWMA) control charts to jointly monitor Gross Domestic Product (GDP) and inflation rate in Ghana, aiming to detect both small and large shifts in the mean vector of these variables. Annual data for the period 1973–2022 were obtained from the Bank of Ghana. Results indicate that the Hotelling T² chart flagged out-of-control points in 1976, 1980, 1982, 2012, and 2013, primarily reflecting moderate-to-large shifts in GDP and inflation. The MCUSUM chart detected a deviation in 1982, while the MEWMA chart identified out-of-control points in 1980, 1982, and 2013, capturing subtle but persistent changes. Comparative analysis suggests that Hotelling T² is most effective for detecting moderate-to-large shifts, whereas MCUSUM and MEWMA provide complementary sensitivity to smaller or time-weighted changes. This study is novel in applying multivariate SPC techniques to Ghana’s macroeconomic indicators, offering a proactive framework for monitoring GDP and inflation jointly. Integrating such charts into the Bank of Ghana’s economic monitoring tools could facilitate earlier detection of macroeconomic deviations and support more informed policy responses.

Keywords

Macroeconomic and financial statistics are fundamental to shaping national economic policies

Downloads

References

1. Abradu-Otoo, P., Adam, A. M., Bawumia, M., & Benford, J. (2024). Quarterly projection model for the Bank of Ghana: Extensions and applications (IMF Working Paper WP/24/237). International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2024/11/15/Quarterly-Projection-Model-for-the-Bank-of-Ghana-Extensions-and-Applications-557364 [Google Scholar] [Crossref]

2. Aboagye, S., & Oteng‐Abayie, E. F. (2020). Inflation uncertainty and economic growth in Ghana. Journal of Economic Studies, 47(7), 1659–1675. https://doi.org/10.1108/JES-01-2019-0027 [Google Scholar] [Crossref]

3. Ackah, C., & Opoku, E. E. O. (2023). Inflation dynamics and monetary policy effectiveness in Ghana. African Development Review, 35(1), 94–110. https://doi.org/10.1111/1467-8268.12635 [Google Scholar] [Crossref]

4. Adom, P. K., & Fiador, V. O. (2022). Macroeconomic instability and economic growth in Ghana: A multivariate analysis. Review of Development Finance, 12(2), 134–145. https://doi.org/10.1016/j.rdf.2022.06.002 [Google Scholar] [Crossref]

5. Agalega, E., & Antwi, S. (2013). The impact of macroeconomic variables on gross domestic product: Empirical evidence from Ghana. International Business Research, 6(5), 108–116. https://doi.org/10.5539/ibr.v6n5p108 [Google Scholar] [Crossref]

6. Agyire-Tettey, F. (2017). Macroeconomic determinants of inflation in Ghana. African Journal of Economic Review, 5(1), 89–110. [Google Scholar] [Crossref]

7. Alhassan, A. L., & Fiador, V. O. (2014). Insurance-growth nexus in Ghana: An autoregressive distributed lag bounds cointegration approach. Review of Development Finance, 4(2), 83–96. https://doi.org/10.1016/j.rdf.2014.05.003 [Google Scholar] [Crossref]

8. Arciszewski, T. J. (2023). A review of control charts and exploring their utility for environmental monitoring. Environments, 10(5), 78. https://doi.org/10.3390/environments10050078 [Google Scholar] [Crossref]

9. Aryeetey, E., & Fosu, A. K. (2005). Ghana’s economy: A quarter century of reforms. Woeli Publishing Services. [Google Scholar] [Crossref]

10. Bade, R. (2016). Economics: Principles & applications (7th ed.). Pearson. [Google Scholar] [Crossref]

11. Bawumia, M., & Abradu-Otoo, P. (2021). Understanding the sources of inflation in Ghana: A structural analysis. Bank of Ghana Working Paper Series, WP/2021/02 [Google Scholar] [Crossref]

12. Boakye, J., & Ackah, I. (2023). Exchange rate volatility, inflation, and growth in Ghana. Ghanaian Journal of Economics, 11(1), 45–67. [Google Scholar] [Crossref]

13. Carson, P. K. (2008). Exponentially Weighted Moving Average (EWMA) control chart properties and sensitivity. Industrial & Engineering Chemistry Research, 47(??), 1–10. (Review of EWMA sensitivity to small shifts.) https://doi.org/10.1021/ie070589b [Google Scholar] [Crossref]

14. Christoffersen, P. F. (2009). Elements of financial risk management (2nd ed.). Academic Press. [Google Scholar] [Crossref]

15. Crossier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291–303. https://doi.org/10.1080/00401706.1988.10488408 [Google Scholar] [Crossref]

16. Custodio, A. L. C., Costa, A. F. B., & Machado, M. A. G. (2013). Application of multivariate control charts for monitoring an industrial process. Quality and Reliability Engineering International, 29(4), 593–605. https://doi.org/10.1002/qre.1421 [Google Scholar] [Crossref]

17. Durfee, M. (1994). Constructing multivariate control charts with SAS™ software. In Proceedings of the SAS Users Group International Conference (SUGI 19). (See discussion on overall false-alarm rates and comparing multivariate vs univariate approaches.) Retrieved from https://support.sas.com/resources/papers/proceedings-archive/SUGI94/Sugi-94-197%20Durfee.pdf [Google Scholar] [Crossref]

18. Fallahnezhad, M. S., & Ghalichehbaf, A. (2023). A review on the MCUSUM charts in detecting shifts of the process with comparison study. Journal of Industrial Engineering Research. (See comparative performance evidence showing MCUSUM/MEWMA advantage for certain shifts.) Retrieved from https://www.researchgate.net/publication/375084099_A_review_on_the_MCUSUM_Charts_in_Detecting_the_Shifts_of_the_PROCESS_with_Comparison_Study [Google Scholar] [Crossref]

19. Frimpong, J. M., & Oteng-Abayie, E. F. (2010). When is inflation harmful? Estimating the threshold effect for Ghana. American Journal of Economics and Business Administration, 2(3), 232–239. https://doi.org/10.3844/ajebasp.2010.232.239 [Google Scholar] [Crossref]

20. Gandy, A., & Kvaløy, J. T. (2013). Guaranteed conditional performance of control charts via bootstrap methods. Scandinavian Journal of Statistics, 40(4), 647–668. https://doi.org/10.1111/sjos.12014 [Google Scholar] [Crossref]

21. Haberler, G. (1960). Prosperity and depression: A theoretical analysis of cyclical movements (5th ed.). Harvard University Press. [Google Scholar] [Crossref]

22. Healy, J. D. (1987). A note on multivariate CUSUM procedures. Technometrics, 29(4), 409–412. https://doi.org/10.1080/00401706.1987.10488260 [Google Scholar] [Crossref]

23. Hotelling, H. (1947). Multivariate quality control, illustrated by the air testing of sample bombsights. In C. Eisenhart, M. W. Hastay, & W. A. Wallis (Eds.), Selected techniques of statistical analysis (pp. 111–184). McGraw-Hill. [Google Scholar] [Crossref]

24. International Monetary Fund. (2010). What is inflation? Finance & Development, 47(1). https://www.elibrary.imf.org/view/journals/022/0047/001/article-A017-en.xml [Google Scholar] [Crossref]

25. International Monetary Fund. (2013). Ghana: 2013 Article IV consultation—Staff report (IMF Country Report No. 13/187). International Monetary Fund. https://www.imf.org/external/pubs/ft/scr/2013/cr13187.pdf [Google Scholar] [Crossref]

26. Joner, M. D., Jr., Woodall, W. H., Reynolds, M. R., Jr., & Fricker, R. D., Jr. (2008). A one-sided MEWMA chart for health surveillance. Quality and Reliability Engineering International, 24(5), 503–518. https://doi.org/10.1002/qre.910 [Google Scholar] [Crossref]

27. Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46–53. https://doi.org/10.1080/00401706.1992.10485232 [Google Scholar] [Crossref]

28. MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403–414. https://doi.org/10.1016/0967-0661(95)00014-L [Google Scholar] [Crossref]

29. Mankiw, N. G., & Taylor, M. P. (2007). Macroeconomics (European ed.). Worth Publishers. [Google Scholar] [Crossref]

30. Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition of T² for multivariate control chart interpretation. Journal of Quality Technology, 27(2), 99–108. https://doi.org/10.1080/00224065.1995.11979571 [Google Scholar] [Crossref]

31. Mbaye, S. (2019). Debt accumulation and economic growth: Evidence from Ghana. African Development Review, 31(S1), 64–76. https://doi.org/10.1111/1467-8268.12413 [Google Scholar] [Crossref]

32. Montgomery, D. C. (2019). Introduction to statistical quality control (8th ed.). John Wiley & Sons. [Google Scholar] [Crossref]

33. Moraes, R. M., Costa, A. F. B., & Machado, M. A. G. (2015). Performance of Hotelling’s T², MCUSUM, and MEWMA charts under different variability sources. Computers & Industrial Engineering, 85, 33–43. https://doi.org/10.1016/j.cie.2015.02.004 [Google Scholar] [Crossref]

34. Ocran, M. K., & Wiafe, E. (2021). Asymmetric effects of inflation on economic growth: Evidence from Ghana. International Journal of Economics and Financial Issues, 11(5), 1–10. [Google Scholar] [Crossref]

35. Osei-Assibey, E., & Adu, G. (2022). Exchange rate pass-through and inflation dynamics in Ghana. Journal of African Business, 23(4), 933–951. https://doi.org/10.1080/15228916.2021.1899889 [Google Scholar] [Crossref]

36. Phaladiganon, P., Kim, S. B., Chen, V. C. P., Baek, J. G., & Park, S. K. (2011). Bootstrap-based T² multivariate control charts. Communications in Statistics—Simulation and Computation, 40(5), 645–662. https://doi.org/10.1080/03610918.2011.554417 [Google Scholar] [Crossref]

37. Phaladiganon, P., & co-authors. (2010). Bootstrap-based T2 multivariate control charts. COSMOS Technical Report. (Discusses Type I error estimation for multivariate T² charts.) Retrieved from https://cosmos.uta.edu/wp-content/uploads/2020/04/COSMOS-10-01.pdf [Google Scholar] [Crossref]

38. Pignatiello, J. J., Jr., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of Quality Technology, 22(3), 173–186. https://doi.org/10.1080/00224065.1990.11979232 [Google Scholar] [Crossref]

39. Saleh, N. A., Mahmoud, M. A., Keefe, M. J., & Woodall, W. H. (2015). The difficulty in designing Shewhart X̄ and X control charts with estimated parameters. Journal of Quality Technology, 47(2), 127–138. https://doi.org/10.1080/00224065.2015.11918120 [Google Scholar] [Crossref]

40. Santos, A., Nogales, F. J., & Ruiz, E. (2013). Comparing univariate and multivariate models to forecast portfolio value-at-risk. Journal of Financial Econometrics, 11(2), 400–422. https://doi.org/10.1093/jjfinec/nbs018 [Google Scholar] [Crossref]

41. Siaw, A. (2014). Forecasting value-at-risk using multivariate GARCH models: Evidence from Ghana. African Review of Economics and Finance, 6(2), 196–213. [Google Scholar] [Crossref]

42. Singh, R., & co-authors. (2002). A real-time information system for multivariate statistical process control. Computers & Industrial Engineering, 43(1–2), 1–12. https://doi.org/10.1016/S0925-5273(01)00189-X [Google Scholar] [Crossref]

43. United Nations, European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, & World Bank. (2009). System of National Accounts 2008. United Nations. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/417501468164641001/system-of-national-accounts-2008 [Google Scholar] [Crossref]

44. Weiseke, J. (2019). Inflation dynamics and macroeconomic performance in Sub-Saharan Africa: Evidence from Ghana. Journal of African Development Studies, 11(2), 56–74. [Google Scholar] [Crossref]

45. Woodall, W. H., & Ncube, M. M. (1985). Multivariate CUSUM quality-control procedures. Technometrics, 27(3), 285–292. https://doi.org/10.1080/00401706.1985.10488068 [Google Scholar] [Crossref]

46. Yeganeh, A., et al. (2023). A novel application of statistical process control charts in financial market surveillance with the idea of profile monitoring. PLoS One. https://doi.org/10.1371/journal.pone.028XXXX [Google Scholar] [Crossref]

47. (available at PMC: https://pmc.ncbi.nlm.nih.gov/articles/PMC10359006/) [Google Scholar] [Crossref]

48. Yeh, A. B., Lin, D. K. J., Zhou, H., & Venkataramani, C. (2003). A multivariate exponentially weighted moving average control chart for monitoring process variability. Journal of Applied Statistics, 30(5), 507–536. https://doi.org/10.1080/0266476032000105075 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles