Real-Time Environmental Monitoring and Growth Analysis of Labisia Pumila in Indoor Conditions Using IoT
Authors
Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Plant Improvement Program, Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor (Malaysia)
Syafiqah Nabilah Samsul Bahari
Department of Geography, Faculty of Arts and Social Sciences, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Wood Chemistry and Non-Wood Utilization Program, Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor (Malaysia)
Center for Biotechnology Bioentrepreneur, Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor (Malaysia)
Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)
Article Information
DOI: 10.51244/IJRSI.2025.12110099
Subject Category: Science & Technology
Volume/Issue: 12/11 | Page No: 1091-1104
Publication Timeline
Submitted: 2025-11-25
Accepted: 2025-12-01
Published: 2025-12-10
Abstract
Labisia pumila (Kacip Fatimah) is a traditional Malaysian herb widely used for women’s health, particularly in alleviating postmenopausal symptoms and aiding childbirth. Indoor cultivation allows precise environmental control, improving growth performance. Environmental data were compiled into a database and analyzed using Principal Component Analysis to identify key growth factors. Light intensity and soil moisture were found to be the dominant parameters influencing leaf development. Optimal growth occurred at 28.56 °C, 85.82 % relative humidity, 974.57 lux, and 88.17 % soil moisture, offering insights for optimized Labisia pumila cultivation.
Keywords
Growth Performance, Indoor Plant, Internet of Things, Labisia pumila, Sensors
Downloads
References
1. Ariff, F. F. M., Saffie, N., Bahari, S. N. S., Abdullah, M. Z. and Lias, M. A., Ensuring Sustainability of Kacip Fatimah (Labisia Pumila) Through Ex-Situ Conservation. Journal of Tropical Resources and Sustainable Science, 2015, 3, 43-47. [Google Scholar] [Crossref]
2. Jalil, M. N., Rezuwan, K. and Hamid, M. A., Performance of Kacip Fatimah (Labisia pumila) Production Under Shade House. Acta Horticulture, 2006, 710, 399-404. [Google Scholar] [Crossref]
3. S, N., M.A, F. F., Syafiqah Nabilah, S. B. and Siti Suhaila, A. R., Sustainable Supply of High Quality Raw Material Labisia pumila (Kacip Fatimah) at Kampung Sagil, Ledang, Johor. International Journal of Agriculture, Forestry and Plantation, 2018, 6, 79-84. [Google Scholar] [Crossref]
4. Jaafar, H. Z. E., Ibrahim, M. H. and Fakri, N. F. M., Impact of Soil Field Water Capacity on Secondary Metabolites, Phenylalanine Ammonia-lyase (PAL), Maliondialdehyde (MDA) and Photosynthetic Responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 2012, 17, 7305-7322. [Google Scholar] [Crossref]
5. Manda, V. K., Dale, O. R., Awortwe, C., Ali, Z., Khan, I. A., Walker, L. A. and Khan, S. I., Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Frontiers in Pharmacology, 2014, 5. [Google Scholar] [Crossref]
6. Dsouz, A., Dixon, M., Shukla, M. and Graham, T., Harnessing controlled-environment systems for enhanced production of medicinal plants. Journal of Experimental Botany, 2025, 76, 76-93. [Google Scholar] [Crossref]
7. Kaur, G., Upadhyaya, P. and Chawla, P., Comparative analysis of IoT-based controlled environment and uncontrolled environment plant growth monitoring system for hydroponic indoor vertical farm. Environmental Research, 2023, 222. [Google Scholar] [Crossref]
8. Chong, J. L., Chew, K. W., Peter, A. P., Ting, H. Y. and Show, P. L., Internet of Things (IoT)-Based Environmental Monitoring and Control System for Home-Based Mushroom Cultivation. Biosensors, 2023, 13. [Google Scholar] [Crossref]
9. I, M., Ashokumar, K. and J, N., Field Monitoring and Automation using IOT in Agriculture Domain. Procedia Computer Science, 2016, 93, 931-939. [Google Scholar] [Crossref]
10. Sanjeevi, P., Prasanna, S., Kumar, B. S., Gunasekaran, G., Alagiri, I. and Anand, R. V., Precision agriculture and farming using Internet of Things based on wireless sensor network. Transactions on Emerging Telecommunications Technologies, 2020, 31, 1-14. [Google Scholar] [Crossref]
11. Martini, B. G., Helfer, G. A., Barbosa, J. L. V., Modolo, R. C. E., Silva, M. R. d., Figueiredo, R. M. d., Mendes, A. S., Silva, L. A. and Leithardt, V. R. Q., IndoorPlant: A Model for Intelligent Services in Indoor Agriculture Based on Context Histories. Sensors, 2021, 21, 1631. [Google Scholar] [Crossref]
12. Ahmad, Y. A., Gunawan, T. S., Mansor, H., Hamida, B. A., Hishamudin, A. F. and Arifin, F., On the Evaluation of DHT22 Temperature Sensor for IoT Application. International Conference on Computer and Communication Engineering, 2021. [Google Scholar] [Crossref]
13. Kirci, P., Ozturk, E. and Celik, Y., A Novel Approach for Monitoring of Smart Greenhouse and Flowerpot Parameters and Detection of Plant Growth with Sensors. Agriculture, 2022, 12, 1705. [Google Scholar] [Crossref]
14. Sadia, S., Propa, M. B., Mamun, K. S. A. and Kaiser, M. S., A Fruit Cultivation Recommendation System based on Pearson’s Correlation Coefficient. International Conference on Information and Communication Technology for Sustainable Development, 2021. [Google Scholar] [Crossref]
15. Rukhiran, M., Sutanthavibul, C., Boonsong, S. and Netinant, P., IoT-Based Mushroom Cultivation System with Solar Renewable Energy Integration: Assessing the Sustainable Impact of the Yield and Quality. Sustainability, 2023, 15, 1-33. [Google Scholar] [Crossref]
16. Nikkhah, A., Rohani, A., Rosentrater, K. A., Assad, M. E. H. and Ghnimi, S., Integration of Principal Component Analysis and Artificial Neural Networks to More Effectively Predict Agricultural Energy Flows. Environmental Progress & Sustainable Energy, 2019, 38, 13130. [Google Scholar] [Crossref]
17. Bersani, C., Ruggiero, C., Sacile, R., Soussi, A. and Zero, E., Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0. Energies, 2022, 15, 1-30. [Google Scholar] [Crossref]
18. Guerrero-Ulloa, G., Méndez-García, A., Torres-Lindao, V., Zamora-Mecías, V., Rodríguez-Domínguez, C. and Hornos, M. J., Internet of Things (IoT)-based indoor plant care system. Journal of Ambient Intelligence and Smart Environments, 2023, 15, 47-62. [Google Scholar] [Crossref]
19. Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., AbdRahman, M. K. I., Otuoze, A. O., Ramli, M. S. A. and Ijike, O. D., IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Information Processing in Agriculture, 2021, 8, 270-283. [Google Scholar] [Crossref]