Feasibility of Imaging Using Portable Ultrasound Device (USD) and Mobile Phone for Point-of-care Diagnosis in Ophthalmic Patients
Authors
Athreya MedTech (USA)
Athreya MedTech (USA)
Portland State University (USA)
Raja Rajeshwari Medical College (India)
Osun State University (Nigeria)
Athreya MedTech (USA)
Article Information
DOI: 10.51244/IJRSI.2025.12110110
Subject Category: Health Science
Volume/Issue: 12/11 | Page No: 1229-1238
Publication Timeline
Submitted: 2025-12-04
Accepted: 2025-12-10
Published: 2025-12-16
Abstract
Medical imaging is important in clinical diagnosis and the individualized treatment of eye diseases. Ultrasound imaging is one of the most prominent technologies for evaluating the orientation, anomalies, and anatomical features of the eye and orbit. However, the interpretation of the data obtained from such studies is best left to expert physicians and technicians who are trained and well-versed in analyzing such images. This technology can provide high-resolution information regarding anatomic and functional changes. In recent years, imaging techniques have developed rapidly, along with therapeutic advances. However, with the increasing sophistication of imaging technology, comprehension and management of eye disease has become more complex due to the large numbers of images and findings that can be recorded for individual patients, as well as the hypotheses supported by these data. Thus, each patient has become a “big data” challenge. Conventional diagnostic methods depend greatly on physicians’ professional experience and knowledge, which can lead to a high rate of misdiagnosis and wastage of medical data. The new era of clinical diagnostics and therapeutics urgently requires intelligent tools to manage medical data safely and efficiently.
Keywords
Point-of-care ultrasound (POCUS), Ophthalmic imaging
Downloads
References
1. Khazaei H, Khazaei D, Ashraf D, Mikkilineni S, Ng JD. Overview of Orbital Ultrasonography. Ann Ophthalmol Vis Sci. 2022; 5(1): 1028. [Google Scholar] [Crossref]
2. Joseph DP, Pieramici DJ, Beauchamp NJ: Computed tomography in the diagnosis and prognosis of open globe injuries. Ophthalmology 2000; 107: 1899–906. [Google Scholar] [Crossref]
3. Arey ML, Mootha VV, Whittemore AR, Chason DP, Blomquist PH: Computed tomography in the diagnosis of occult open globe injuries.Ophthalmology 2007; 114: 1448–52. [Google Scholar] [Crossref]
4. Turkcuer I, Atilla R, Topacoglu H, et al: Do we really need plain and soft-tissue radiographies to detect radiolucent foreign bodies in the IED. Am J Emerg Med 2006; 24(7): 763–8. [Google Scholar] [Crossref]
5. Bray PW, Mahoney JL, Campbell JP: Sensitivity and specificity of ultrasound in the diagnosis of foreign bodies in the hand. J Hand Surg Am 1995; 20(4): 661–6. [Google Scholar] [Crossref]
6. Oikarinen KS, Nieminen TM, Makkarainen H, Pyhtinen J: Visibility of foreign bodies in soft tissue in plain radiographs, computed tomography, magnetic resonance imaging and ultrasound. In vitro study. Int J Oral Maxillofac Surg 1993; 22(2): 119–24. [Google Scholar] [Crossref]
7. Aras MH, Miloglu O, Barutcugil C, Kantarci M, Ozcan E, Harorli A: Comparison of the sensitivity for detecting foreign bodies among conventional plain radiography, computed tomography and ultrasonography. Dentomaxillofac radiol 2010; 39(2): 72–8. [Google Scholar] [Crossref]
8. Blaivas M, Theodoro D, Sierzenski P: A study of bedside ocular ultrasonography in the emergency department. Acad Emerg Med 2002; 9: 791–9. [Google Scholar] [Crossref]
9. Blaivas M: Bedside emergency department ultrasonography in the evaluation of ocular pathology. Acad Emerg Med 2000; 7(8): 947–50. [Google Scholar] [Crossref]
10. Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A: Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 2009; 26:630–4. [Google Scholar] [Crossref]
11. Sargsyan AE, Dulchavsky AG, Adams J, Melton S, Hamilton DR, Dulchavsky, SA: Detection of simulated intra-ocular foreign bodies by minimally trained personnel. Avait Space Environ Med 2008. 79(1): 58–61. [Google Scholar] [Crossref]
12. Weichel ED, Colver MH: Combat ocular trauma and systemic injury. Curr Opin Opthalmol 2008. 19(6): 519–25. [Google Scholar] [Crossref]
13. Colyer MH, Chun DW, Bower KS, Dick JS, Weichel ED: Perforating globe injuries during operation Iraqi Freedom. Ophthalmology 2008; 115(11): 2087–93. [Google Scholar] [Crossref]
14. Colyer MH, Weber ED, Weichel ED, et al: Delayed intraocular foreign body removal without endophthalmitis during operations Iraqi Freedom and Enduring freedom. Ophthalmology 2007; 114: 1439–47. [Google Scholar] [Crossref]
15. Sawyer N: Ultrasound imaging of penetrating ocular trauma. J Emerg Med 2009; 36(2): 181–2. [Google Scholar] [Crossref]
16. Blaivas M. Bedside emergency department ultrasonography in the evaluation of ocular pathology. Acad Emerg Med 2000; 7:947–950. [Google Scholar] [Crossref]
17. Evans LV, Dodge KL, Shah TD, et al. Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med 2010; 85:1462–1469. [Google Scholar] [Crossref]
18. Keenan SP. Use of ultrasound to place central lines. J Crit Care 2002; 17:126–137 [Google Scholar] [Crossref]
19. Sharma R, Brunette DD. Ophthalmology. In: Marx J, Hockberger R,Walls R (eds). Rosen’s Emergency Medicine. 7th ed. Philadelphia, PA: Elsevier Mosby; 2010:226–239. [Google Scholar] [Crossref]
20. Evans LV, Dodge KL, Shah TD, et al. Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med 2010; 85:1462–1469 [Google Scholar] [Crossref]
21. Keenan SP. Use of ultrasound to place central lines. J Crit Care 2002; 17:126–137. [Google Scholar] [Crossref]
22. Yan H, Ahmed AS, Han J, Cui J, Yu J. A vitreous hemorrhage animal model in rabbits using force percussion injury. Curr Eye Res 2009; 34:717–726. [Google Scholar] [Crossref]
23. Glickman RD, Maswadi SM, Dodd SJ, Gao J. Mapping 3-dimensional temperature gradients using magnetic resonance thermography in an ocular phantom during laser-induced hyperthermia. Invest Ophthalmol Vis Sci 2003; 44: e-abstract 3631. [Google Scholar] [Crossref]
24. Kendall JL Faragher, JP. Ultrasound-guided central venous access: a homemade phantom for simulation. CJEM2007; 9:371–373. [Google Scholar] [Crossref]
25. Madsen EL, Frank GR, Dong F. Liquid or solid ultrasonically tissue-mimicking materials with very low scJun Shi, Shichong Zhou, Xiao Liu, Qi Zhang, Minhua Lu, and Tianfu Wang. Stacked.deep polynomial network-based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing, 194:87–94, 2016. [Google Scholar] [Crossref]
26. Zahra Sobhaninia, Shima Rafiei, Ali Emami, Nader Karimi, Kayvan Najarian, Shadrokh Samavi, and SM Reza Soroushmehr. Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), pages 6545– 6548. IEEE, 2019. [Google Scholar] [Crossref]
27. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017. [Google Scholar] [Crossref]
28. Jeya Maria Jose Valanarasu, Rajeev Yasarla, Puyang Wang, Ilker Hacihaliloglu, and Vishal M Patel. Learning to segment brain anatomy from 2d ultrasound with less data. IEEE Journal of Selected Topics in Signal Processing, 14(6):1221–1234, 2020. [Google Scholar] [Crossref]
29. Thomas LA van den Heuvel, Dagmar de Bruijn, Chris L de Korte, and Bram van Ginneken. Automated measurement of fetal head circumference using 2d ultrasound images. PloS one, 13(8): e0200412, 2018. [Google Scholar] [Crossref]
30. Thomas LA van den Heuvel, Hezkiel Petros, Stefano Santini, Chris L de Korte, and Bram van Ginneken. Automated fetal head detection and circumference estimation from freehand ultrasound sweeps using deep learning in resource-limited countries. Ultrasound in medicine & biology, 45(3):773–785, 2019. [Google Scholar] [Crossref]
31. Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint search for network architecture, pruning and quantization policy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2078–2087, 2020.atter. Ultrasound Med Biol1998; 24:535–542 [Google Scholar] [Crossref]
32. M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013. [Google Scholar] [Crossref]
33. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [Google Scholar] [Crossref]
34. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014. [Google Scholar] [Crossref]
35. Cole OK, Abubakar MM, Isah A, Sule SH, Ukoha-Kalu BO (2025) Barriers and facilitators of provision of telemedicine in Nigeria: A systematic review. PLOS Digit Health 4(7): e0000934. https://doi.org/10.1371/journal.pdig.000934 [Google Scholar] [Crossref]
36. Ezeonwumelu IJ, Obijiaku IJ, Ogbueche CM, Reunlearn360 2020 Cohort, Nwaozuru U (2022) Healthcare provider-to-patient perspectives on the uptake of teleconsultation services in the Nigerian healthcare system during the COVID-19 pandemic era. PLOS Glob Public Health 2(2): e0000189. https://doi.org/10.1371/journal.pgph.0000189 [Google Scholar] [Crossref]
37. H. Khazaei, Danesh K., D. Ashraf, Shravani M., John D Ng. Ultrasound Tomography (3D) Triage for Oculofacial Emergencies- new paradigms. Radiol. Res. Diagno Imag. Vol 1 Iss 1. (2022) DOI: 10.58489/2836-5127/001 [Google Scholar] [Crossref]
38. Young BK, Cole ED, Shah PK, et al. Efficacy of Smartphone-Based Telescreening for Retinopathy of Prematurity With and Without Artificial Intelligence in India. JAMA Ophthalmol. 2023;141(6):582–588. doi:10.1001/jamaophthalmol.2023.1466 [Google Scholar] [Crossref]
39. Dodwad, Rutusha; Das, Dipankar; Kuri, Ganesh Chandra; Mahapatra, Madhusmita; Rehman, Obaidur. Intrasellar Rathke's cleft cyst with bilateral temporal optic disk pallor in a myopic girl. Indian Journal of Ophthalmology - Case Reports 3(2):p 591-593, Apr–Jun 2023. | DOI: 10.4103/ijo.IJO_1897_22 [Google Scholar] [Crossref]
40. Sagemüller F, Bruns S, Mußhoff O (2022) The effect of poor vision on economic farm performance: Evidence from rural Cambodia. PLoS ONE 17(9): e0274048. https://doi.org/10.1371/journal.pone.0274048 [Google Scholar] [Crossref]
41. Khazaei H, ed. Fundamentals of Orbital Inflammatory Disorders. Springer Nature Switzerland; 2025. doi:10.1007/978-3-031-85768-3 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Measuring Waste of Patient Time in Health Care at Non-Digitized Hospital: An Observational Study in Bangabandhu Sheikh Mujib Medical University, Bangladesh
- Reaffirming Clinical Confidence in Atorvastatin Therapy: A Digital Outreach Case Study from Tamil Nadu, India
- Clinical Manifestations and Therapeutic Response in a Patient with Hypothyroidism: A Case Report
- Eranda (Ricinus Communis) In Gridhrasi (Sciatica): Classical Rationale, Pharmacology and Clinical Evidence- A Narrative Literature Review
- Magnetotherapy in Pain Management: Mechanisms, Clinical Applications, and Future Perspectives – A Review