Chronological Versus Biological Age: The Role of Diet and Healthy Lifestyle in Modulating Epigenetic Aging

Authors

Ms. Shaily Mishra

Vice- Principal- Adani Vidya Mandir, Ahmedabad (India)

Ms. Riddhi Chavda

Student of 11 Biology - Adani Vidya Mandir, Ahmedabad (India)

Article Information

DOI: 10.51244/IJRSI.2025.12120055

Subject Category: Science Education

Volume/Issue: 12/12 | Page No: 652-669

Publication Timeline

Submitted: 2025-12-21

Accepted: 2026-01-26

Published: 2026-01-04

Abstract

Biological age has emerged as a meaningful indicator of how rapidly an individual is aging at the cellular and physiological levels. Unlike chronological age, which simply reflects time elapsed, biological age incorporates molecular and functional changes that better predict healthspan and disease risk. Epigenetic clocks—based on patterns of DNA methylation at age-sensitive CpG sites—are among the most robust tools for estimating biological age and detecting subtle differences in aging trajectories. Increasing evidence suggests that biological age is modifiable, particularly through targeted lifestyle intervention strategies.

Keywords

Biological age, Chronological age, Epigenetic clock

Downloads

References

1. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115 [Google Scholar] [Crossref]

2. Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., Ferrucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging, 10(4), 573–591. https://doi.org/10.18632/aging.101414 [Google Scholar] [Crossref]

3. Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303–327. https://doi.org/10.18632/aging.101684 [Google Scholar] [Crossref]

4. Fitzgerald, K. N., Hodges, R., Hanes, D., Stack, E., Trevorrow, S., Li, Y., Kim, Y., & Horvath, S. (2021). Potential reversal of epigenetic age using a diet and lifestyle intervention: A pilot randomized clinical trial. Aging (Albany NY), 13(7), 9419–9432. https://doi.org/10.18632/aging.202913 [Google Scholar] [Crossref]

5. Fahy, G. M., Brooke, R. T., Watson, J. P., et al. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell, 18(6), e13028. https://doi.org/10.1111/acel.13028 [Google Scholar] [Crossref]

6. Waziry, R., Ryan, J., McCartney, D. L., et al. (2023). Effect of long-term caloric restriction on DNA methylation measures of biological aging: Analysis of the CALERIE randomized clinical trial. Nature Aging, 3(2), 248–259. https://doi.org/10.1038/s43587-022-00357-y [Google Scholar] [Crossref]

7. Bouchard, C., Blair, S. N., & Katzmarzyk, P. T. (2015). Physical activity, fitness, and biological aging: Molecular and physiological mechanisms. Journal of Applied Physiology, 118(9), 1156–1166. https://doi.org/10.1152/japplphysiol.00316.2015 [Google Scholar] [Crossref]

8. Booth, F. W., Roberts, C. K., & Laye, M. J. (2012). Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology, 2(2), 1143–1211. https://doi.org/10.1002/cphy.c110025 [Google Scholar] [Crossref]

9. Gensous, N., Garagnani, P., Santoro, A., et al. (2020). One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: A NU-AGE intervention study. Aging Cell, 19(3), e13128. https://doi.org/10.1111/acel.13128 [Google Scholar] [Crossref]

10. International Olympic Committee. (2019). Elite athlete health, training load, recovery, and longevity: Consensus statement. British Journal of Sports Medicine, 53(8), 439–446. https://doi.org/10.1136/bjsports-2018-099941 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles