The Role of Metfirnin and Artesunate-amodiaquine Combination in Preventing Cerebral Malaria in Mice

Authors

Nwuzor, E. O.

Department of Biochemistry, Faculty of Biological Sciences, University of Uyo, Uyo;Department of Industrial and Medicinal Chemistry, Faculty of Natural Sciences, David Umahi Federal University of Health asciences, Uburu (Nigeria)

Ndem J. I.

Department of Biochemistry, Faculty of Biological Sciences, University of Uyo, Uyo (Nigeria)

Inwang, U. A.

Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike (Nigeria)

Oshim, O. I.

Department of Medical Laboratory Scviences, David Umahi Federal University of Health asciences, Uburu (Nigeria)

Bassey, U. E.

Department of Biochemistry, Faculty of Biological Sciences, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2026.13014005

Subject Category: Public Health

Volume/Issue: 13/14 | Page No: 42-56

Publication Timeline

Submitted: 2025-11-16

Accepted: 2025-11-23

Published: 2026-01-29

Abstract

Background and objective: Cerebral malaria is one of the important complications of malaria infection responsible for most malaria-related cases of death. This study investigated the antiplasmodial and some neurological effect of metformin prophylaxis and artesunate-amodiaquine curative regimen in Plasmodium berghei infected male mice.
Methods: Sixty male mice were randomly divided into six groups labeled I to VI with each group containing ten mice. Group I was normal control (NC) that received water and feed ad libitum, group II was negative control parasitized with P. berghei berghei and not treated, while group III wast positive control parasitized and treated with artesunate-amodiaquine. Group IV received metformin prophylaxis for seven days before pasitemia induction and not treated thereafter. Group V received metformin for seven days, parasitized and later treated with artesunate-amodiaquine. Group VI were treated with metformin and artesunate-amodiaquine combination after parasitemia induction. Initial parasitemia was established after 72 hours using tail-blood film microscopy, and final parasitemia was determined 24 hours after the last treatment. All post-infection treatments lasted for three days, after which the animals were euthanized. The hippocampal tissues were harvested, and some homogenized and the homogenate used for biochemical assay; while some others were used histological examination.
Results: Parasitemia level was significantly (p < 0.05) decreased in treated groups, especially in the group that received both metformin prophylaxis and artesunate-amodiaquine post-infection treatment (group V). The oxidative stress biomarkers, inflammatory biomarkers and neurotransmitters in the hippocampal homogenates of treated groups especially group V were significantly (p < 0.05) restored close to those of normal mice.
Conclusions: This study concludes that metformin could be repurposed as a good prophylactic agent to artemisinin-based combination therapies against Plasmodium malaria infection. This implies that metformin prophylaxis might help in combating Plasmodial malaria resistance; thus, prevent complications such as cerebral malaria.

Keywords

Metformin, Artesunate-amodiaquine, P.berghei, Cerebral malaria, Neurotransmitters

Downloads

References

1. Alum, E. U., Tufail, T., Agu, P. C., Akinloye, D. I. and Obaroh, I. O. (2024). Malaria pervasiveness in Sub-Saharan Africa Overcoming the scuffle. Medicine, 103(19): 1 – 5. [Google Scholar] [Crossref]

2. Egwu, C. O., Aloke, C., Chukwu, J., Nwankwo, J. C., Irem, C., Nwagu, K. E., Nwite, F. Agwu, A. O., Alum, E., Offor, C. E. and Obasi, N. A, (2023). Assessment of the antimalarial treatment failure in Ebonyi State, Southeast Nigeria. Journal of Xenobiotics, 13: 16 – 26. [Google Scholar] [Crossref]

3. Kungu, E., Inyangat, R., Ugwu, O. P. C. and Alum, E. U. (2023). Exploration of medicinal plants used in the management of malaria in Uganda. Newport International Journal of Research in Medical Sciences, 4: 101 – 108. [Google Scholar] [Crossref]

4. Dutta, G. (2020). Electrochemical biosensors for rapid detection of malaria. Materials Science for Energy Technologies, 3: 150 - 158. [Google Scholar] [Crossref]

5. Opajobi, A. O., Onobrudu, D. A., Ojugbeli, E. T., Uzuegbu, U. E., Toloyai, P. Y., Elu, C. O., Oshiegbu, W. and Onyesom, I. (2022). Levels of cerebral malaria indices, free radical scavengers and preventive antioxidants in Plasmodium berghei-infected mice treated with phytochemical extracts of Phyllanthus amarus Schum and Thonn. NeuroQuantology, 20(6): 374 – 390. [Google Scholar] [Crossref]

6. Akide Ndunge, O. B., Kilian, N. and Salman, M. M. (2022). Cerebral malaria and neuronal implications of Plasmodium falciparum infection: From mechanisms to advanced models. Advanced Science, 9(36): 1 – 23. [Google Scholar] [Crossref]

7. Conroy, A. L., Opoka, R. O., Bangirana, P., Namazzi, R., Okullo, A. E., Georgieff, M. K., Cusick, S., Idro, R., Ssenkusu, J. M. and John, C. C. (2021). Parenteral artemisinins are associated with reduced mortality and neurologic deficits and improved long-term behavioral outcomes in children with severe malaria. BioMed Centre Medicine, 19: 168 – 180. [Google Scholar] [Crossref]

8. Borgstein, A., Zhang, B., Lam, C., Gushu, M. B., Liomba, A. W., Malenga, A., Pensulo, P., Tebulo, A., Small, D. S., Taylor, T. and Seyde, K. (2022). Delayed presentation to hospital care is associated with sequelae but not mortality in children with cerebral malaria in Malawi. Malar Journal, 21, 60 – 68. [Google Scholar] [Crossref]

9. Oluwayemi, I. O., Brown, B. J., Oyedeji, O. A., and Oluwayemi, M. A. (2013). Neurological sequelae in survivors of cerebral malaria. Pan African Medical Journal, 15: 88 - 97. [Google Scholar] [Crossref]

10. Mukherjee, S., Ray, G., Saha, B. and Kar, S. K. (2022). Oral therapy using a combination of nanotized antimalarials and immunomodulatory molecules reduces inflammation and prevents parasite induced pathology in the brain and spleen of P. berghei ANKA infected c57bl/6 mice. Frontiers in Immunology,12: 1 - 17. [Google Scholar] [Crossref]

11. Vera, I. M., Ruivo, M. T. G., Rocha, L. F. L., Marques, S., Bhatia, S. N., Mota, M. M. and Mancio-Silva, L. (2019). Targeting liver stage malaria with metformin. JCI Insight, 4(24): e127441. [Google Scholar] [Crossref]

12. Kluck, G. E. G., Wendt, C. H. C., do Imperio, G. E., Araujo, M. F. C., Atella, T. C., da Rocha, I., Miranda, K. R. and Atella, G. C. (2019). Plasmodium Infection Induces Dyslipidemia and a Hepatic Lipogenic State in the Host through the Inhibition of the AMPK-ACC Pathway. Scientific Report, 9: 1 – 13. [Google Scholar] [Crossref]

13. Ndem, J. I., Bassey, E., Effiong, B. O., Bassey, U. E. and Ini, S. D. (2019). Haematopoietic potential of jatropha tanjorensis leaf extract in Plasmodium berghi-berghi infected mice treated with hippocratea africana root bark extract. Journal of Diseases and Medicinal Plants,; 5(4): 69 – 73. [Google Scholar] [Crossref]

14. Kundu, A., Das, J., Acharya, K. and Mondal, N. K. (2010). In vivo antimalarial study of PITC2 of Pluchea indica (L.) Less against Plasmodium berghei and Plasmodium yalli model. Pharmacologyonline, 3: 817 - 823. [Google Scholar] [Crossref]

15. Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47: 469 - 474. [Google Scholar] [Crossref]

16. Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinical Chemistry, 196(2-3): 143 - `51. [Google Scholar] [Crossref]

17. Flohé, L. and Günzler, W. A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105: 114 - 121. [Google Scholar] [Crossref]

18. Reilly, C. A. and Aust, S. D. (2001). Measurement of Lipid Peroxidation. In Current Protocols in Toxicology, Chapter 2: Unit 2.4. John Wiley AND Sons. DOI: 10.1002/0471140856.tx0204s00 [Google Scholar] [Crossref]

19. Israeli, E., Okura, H., Kreutz, B., Piktel, R., Hadji, A., Tu, B., Lin, Z., Hawksworth, D. J., Tieman, B. C., Strobel, C. J., Ziemann, R., Leary, T. P., Muerhoff, A. S. and Hemken, P. M. (2022). Development of a new automated IL-6 immunoassay. Journal of Immunological Methods, 504: 1 – 6. [Google Scholar] [Crossref]

20. Brizzolari, A., Dei Cas, M., Cialoni, D., Marroni, A., Morano, C., Samaja, M., Paroni, R. and Rubino, F. M. (2021). High-throughput griess assay of nitrite and nitrate in plasma and red blood cells for human physiology studies under extreme conditions. Molecules, 26(15): 1 – 20. [Google Scholar] [Crossref]

21. Panteghini, M. and Bonora, R. (1984). Evaluation of a new continuous colorimetric method for determination of serum pseudocholinesterase catalytic activity and its application to a centrifugal fast analyser. Journal of Clinical Chemistry and Clinical Biochemistry, 22(10): 671 - 676. [Google Scholar] [Crossref]

22. Cardiff, R., Miller, C.H. and Munn, R. .J. (2014). Manual Haematoxylin and Eosin staining of mouse tissue sections," Cold Spring Harbor Protocols, 6: 561 - 565. [Google Scholar] [Crossref]

23. Dhurba, G. (2015). Hematoxylin and Eosin Staining: principle, procedure and interpretation, Histopathology, 4: 125 - 130. [Google Scholar] [Crossref]

24. Mokogwu, A. T. H., Amaihunwa, K. C., Adjekuko, C. O., Ekene, E. N., Okoro, E. O., Adeosun, O. G. and Avwioro, G. O. (2024). In vivo antimalarial and liver function profiles of methanol extract of Salvia officinalis (common sage) leaf in Plasmodium berghei-infected mice. Ethiopian Journal of Health Sciences, 34(4): 290 – 300. [Google Scholar] [Crossref]

25. Udeme, O. G., Harold, M. and Elias, A. (2020). Antiplasmodial Activity of Artemether Lumefantrine-Tinidazole on Plasmodium Berghei Infected Mice. Health Science, 1 – 5. [Google Scholar] [Crossref]

26. Reis, P. A., Comim, C. M., Hermani, F., Silva, B., Barichello, T., Portella, A. C., Gomes, F. C., Sab, I. M., Frutuoso, V. S., Oliveira, M. F., Bozza, P. T., Bozza, F. A., Dal-Pizzol, F., Zimmerman, G. A., Quevedo, J. and Castro-Faria-Neto, H. C. (2010). Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. Public Library of Science Pathogens, 6(6): 1 - 16. [Google Scholar] [Crossref]

27. Raza, A., Varshney, S. K., Shahid, M., Khan, H. M., Malik, M. A., Mahdi, A. A. and Shujatullah, F. (2013). Lipid peroxidation in cerebral malaria and role of antioxidants. IOSR Journal of Pharmacy, 3(1): 15 – 18. [Google Scholar] [Crossref]

28. Prabhu, S. A., Patharkar, N. J., Patil, A. V., Nerurkar, U. R., Shinde, U. R. and Shinde, K. U. (2021). Study of malondialdehyde level and glutathione peroxidase activity in patients suffering from malaria. Journal of Pharmaceutical Research International, 33(26A): 35 – 41 [Google Scholar] [Crossref]

29. Adegoke, A. O., Odeghe, B. S., George-Opuda, I. M., Awopeju, A. T., Elechi-Amadi, K. N. and Chidiebere-Onwukwe, E. (2023). Assessment of some brain antioxidants profile in Plasmodium berghei berghei infected mice treated with ethanol leaf extract of Musa paradisiaca. Journal of Advances in Medical and Pharmaceutical Sciences, 25(3): 31 – 38. [Google Scholar] [Crossref]

30. Lundberg, J. O. and Weitzberg, E. (2022). Nitric oxide signaling in health and disease. Cell, 185(16): 2853 – 2878. [Google Scholar] [Crossref]

31. Andres, C. M. C., Perez de la Lastra, J. M., Juan, C. A., Plou, F. J. and Perez-Lebena, E. (2022). The role of reactive species on innate immunity. Vaccines, 10(11): 1735 - 1759. [Google Scholar] [Crossref]

32. Kleinert, H. and Forstermann, U. (2007). Inducible nitric oxide synthase. In S. J. Enna & D. B. Bylund (Eds.), xPharm: The Comprehensive Pharmacology Reference, 1 - 12. [Google Scholar] [Crossref]

33. Bath, P. M., Coleman, C. M., Gordon, A. L., Lim, W. S. and Webb, A. J. (2021). Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Research, 10: 536 - 579. [Google Scholar] [Crossref]

34. Silva, T. I. D., Fernandes, T. D. C., Sá Moreira, E. T., Costa Ferreira, A. D., Estato, V., de Castro Faria Neto, H. C. and Reis, P. A. (2024). Role of nitric oxide synthase ii in cognitive impairment due to experimental cerebral malaria. Nitric Oxide, 153: 41 - 49. [Google Scholar] [Crossref]

35. Vathsala, P. G. and Krishna Murthy, P. (2020). Immunomodulatory and antiparasitic effects of garlic-arteether combination via nitric oxide pathway in Plasmodium berghei-infected mice. Journal of Parasitic Diseases, 44(1): 49 – 61. [Google Scholar] [Crossref]

36. Barbosa, A. da S., Temple, M. C. R., Varela, E. L. P., Gomes, A. R. Q., Silveira, E. L., Carvalho, E. P., Dolabela, M. F. and Percario, S. (2021). Inhibition of nitric oxide synthesis promotes increased mortality despite the reduction of parasitemia in Plasmodium berghei-infected mice. Research, Society and Development, 10(11): 1 - 15. [Google Scholar] [Crossref]

37. Bangirana, P., Conroy, A. L., Opoka, R. O., Hawkes, M. T., Hermann, L., Miller, C., Namasopo, S., Liles, W. C., John, C. C. and Kain, K. C. (2018). Inhaled nitric oxide and cognition in pediatric severe malaria: A randomized double-blind placebo-controlled trial. Public Library of Science Open Network and Evolving, 13(2): 1 - 13. [Google Scholar] [Crossref]

38. Freire-Antunes, L., Ornellas-Garcia, U., Rangel-Ferreira, M., Ribeiro-Almeida, M. L., Carvalho, L. J. M., Daniel-Ribeiro, C. T. and Ribeiro-Gomes, F. L. (2025) Microglia exhibit a dynamic response, modulating inducible nitric oxide synthase expression and the production of pro-inflammatory cytokines during experimental cerebral malaria. Frontiers in Immunology, 16: 1 - 12. [Google Scholar] [Crossref]

39. Schiess, N., Villabona Rueda, A., Cottier, K. E., Huether, K., Chipeta, J. and Stins, M. F. (2020). Pathophysiology and neurologic sequelae of cerebral malaria. Malaria Journal, 19:266 – 278. [Google Scholar] [Crossref]

40. Tembo, D., Harawa, V., Tran, T. C., Afran, L., Molyneux, M. E., Taylor, T. E.,, Seydel, K. B., Nyirenda, T., Russell, D. G. and Mandala, W. (2023). The ability of Interleukin–10 to negate haemozoin-related pro-inflammatory effects has the potential to restore impaired macrophage function associated with malaria infection. Malaria Journal, 22(1): 125 - 141. [Google Scholar] [Crossref]

41. Kumar, A. (2015). N-methyl-D-aspartate receptor function during senescence: Implication on cognitive performance. Frontiers in Neuroscience, 9: 473 - 488. [Google Scholar] [Crossref]

42. Wu, X., Thylur, R. P., Dayanand, K. K., Punnath, K., Norbury, C. C. and Gowda, D. C. (2021). IL-4 treatment mitigates experimental cerebral malaria by reducing parasitemia, dampening inflammation, and lessening the cytotoxicity of T cells. Journal of Immunology, 206(1): 118 – 131. [Google Scholar] [Crossref]

43. Guiguemde, W. A., Hunt, N. H., Guo, J., Marciano, A., Haynes, R. K., Clark, J., Guy, R. K. and Golenser, J. (2014). Treatment of murine cerebral malaria by artemisone in combination with conventional antimalarial drugs: Antiplasmodial effects and immune responses. Antimicrobial Agents and Chemotherapy, 58(8): 4745 – 4754. [Google Scholar] [Crossref]

44. Rangel-Gomez, M. and Meeter, M. (2016). Neurotransmitters and novelty: A systematic review. Journal of Psychopharmacology, 30(1): 3 – 12. [Google Scholar] [Crossref]

45. Lopes de Souza, T., Beck Grauncke, A. C., Ribeiro, L. R., Mello, F. K., Oliveira, S. M., Brant, F., Machado, F. S. and Oliveira, M. S. (2017). Cerebral malaria causes enduring behavioral and molecular changes in mice brain without causing gross histopathological damage. Neuroscience, 14: 1 - 10 [Google Scholar] [Crossref]

46. Sheffler, Z. M., Reddy, V. and Pillarisetty, L. S. (2022). Physiology, neurotransmitters. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. [Google Scholar] [Crossref]

47. https://www.ncbi.nlm.nih.gov/books/NBK539894/ [Google Scholar] [Crossref]

48. Monteiro, M. C., Oliveira, F. R., Oliveira, G. B., Romao, P. R. T. and Maia, C. S. F. (2014). Neurological and behavioral manifestations of cerebral malaria: An update. World Journal of Translational Medicine, 3(1): 9 – 16. [Google Scholar] [Crossref]

49. De Miranda, A. S., Brant, F., Campos, A. C., Vieira, L. B., Rocha, N. P., Cisalpino, D., Binda, N. S., Rodrigues, D. H., Ransohoff, R. M., Machado, F. S. Rachid, H. and Teixeira, A. l. (2015). Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience, 284: 920 – 933. [Google Scholar] [Crossref]

50. Malomouzh, A. I., Petrov, K. A., Nurullin, L. F. and Nikolsky, E. E. (2015). Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. Journal of Neurochemistry, 135(6): 1149 - 60. [Google Scholar] [Crossref]

51. Oliveira, K. R. H. M., Kauffmann, N., Leão, L. K. R., Passos, A. C. F., Rocha, F. A. F., Herculano, A. M. and do Nascimento, J. L. M. (2017). Cerebral malaria induces electrophysiological and neurochemical impairment in mice retinal tissue: possible effect on glutathione and glutamatergic system. Malar Journal, 16(1): 440 – 450. . [Google Scholar] [Crossref]

52. Daniyan, M. O., Fisusi, F. A. and Adeoye, O. B. (2022). Neurotransmitters and molecular chaperones interactions in cerebral malaria: Is there a missing link? Frontiers in Molecular Biosciences, 9: 1 - 18. [Google Scholar] [Crossref]

53. Briggs, A. M., Hambly, M. G., Simão-Gurge, R. M., Garrison, S. M., Khaku, Z., Van Susteren, G., Lewis, E. E., Riffell, J. A. and Luckhart, S. (2022). Anopheles stephensi feeding, flight behavior, and infection with malaria parasites are altered by ingestion of serotonin. Frontiers in Physiology, 13: 116 - 125. [Google Scholar] [Crossref]

54. Das, A., Suar, M. and Reddy, K. S. (2024).. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Bioscience Report, 44(11): 1 - 30. [Google Scholar] [Crossref]

55. Sanguanwong, P., Khowawisetsut, L., Kwathai, L., Varinthra, P., Turbpaiboon, C., Uawithya, P., Sobhon< P., Liu, I. Y. and Chompoopong, S. (2025). Combination astragaloside IV and artesunate preserves blood–brain barrier integrity by modulating astrocytes and tight junction proteins in Plasmodium yoelii infection. International Journal for Parasitology: Drugs and Drug Resistance, 28: 1 – 15. [Google Scholar] [Crossref]

56. Islahudin, F., Tindall, S. M., Mellor, I. R., Swift, K., Christensen, H. E. M., Fone, K. C. F., Pleass, R. J., Ting, K. and Avery, S. V. (2014). The antimalarial drug quinine interferes with serotonin biosynthesis and action. Scientific Report, 4: 1 – 7. [Google Scholar] [Crossref]

57. Thompson, A. J. and Lummis, S. C. R. (2008). Antimalarial drugs inhibit human 5-HT3 and GABAA but not GABAC receptors. British Journal of Pharmacology, 153(8): 1686 – 1696. [Google Scholar] [Crossref]

58. Alharbi, A., Albasyouni, S., Al-Shaebi, E., Al Quraishy, S. and Abdel-Gaber, R. (2025). Neuroprotective and antimalarial effects of Juglans regia leaf extracts in a murine model of cerebral malaria. Frontiers in Veterinary Science, 12: 1 - 15. [Google Scholar] [Crossref]

59. Sharma, P., Verma, P. K., Sood, S., Pankaj, N. K., Agarwal, S. and Raina, R. (2021). Neuroprotective potential of hydroethanolic hull extract of Juglans regia L. on isoprenaline-induced oxidative damage in brain of Wistar rats. Toxicology Reports, 8: 223 – 229. [Google Scholar] [Crossref]

60. Rusu, M. E., Georgiu, C., Pop, A., Mocan, A., Kiss, B., Vostinaru, O., Fizesan, I, Stefan, M., Gheldiu, A., Mates, L., Moldovan, R., Muntean, D. M., Loghin, F., Vlase, L. and Popa, D. (2020). Antioxidant effects of walnut (Juglans regia L.) kernel and walnut septum extract in a D-galactose-induced aging model and in naturally aged rats. Antioxidants, 9(5): 424 - 449. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles