Analyzing the Efficacy: A Comparative Study Between the Conventional AHP Model and Fuzzy- AHP Model for Groundwater Potentiality Prediction in Basement Terrain Using Geophysical Data Sets
Authors
Department of Applied Geophysics, Federal University of Technology, Akure (Nigeria)
Department of Applied Geophysics, Federal University of Technology, Akure (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.120800399
Subject Category: GEOSCIENCE
Volume/Issue: 12/9 | Page No: 4398-4420
Publication Timeline
Submitted: 2025-09-16
Accepted: 2025-09-24
Published: 2025-10-18
Abstract
This study integrates geophysical, geological, and remote sensing techniques to evaluate groundwater potential in the basement complex terrain of southwestern Nigeria, an area where sustainable groundwater development remains a critical challenge. To produce a comprehensive groundwater potential map, eight thematic layers known to influence groundwater occurrence and movement were derived from the available datasets. These include lithology, slope, recharge rate, lineament density, aquifer transmissivity, hydraulic conductivity, overburden thickness, and aquifer resistivity. Each parameter was carefully analyzed and weighted to reflect its relative significance in groundwater occurrence. The mapping process employed both the Analytical Hierarchy Process (AHP) and its advanced fuzzy-based extension (FAHP) to compare the performance of conventional and modified multi-criteria decision-making techniques. The integrated analysis delineated the study area into five distinct groundwater potential zones, namely very high, high, moderate, low, and very low. These classes provided a spatial framework for understanding the variability of groundwater occurrence across the region.
Keywords
Groundwater potential, Geophysics, Remote sensing
Downloads
References
1. 20.Ekelund, S. (2011). Acute care testing. ROC curves- what are they and how are they used? Acutecaretesting.org [Google Scholar] [Crossref]
2. Abdulkareem, M., Akrby, A., Fakhry, M. and Mostafa, M., (2018). Using of remote sensing and aeromagnetic data for predicting potential areas of hydrothermal mineral deposits in the central eastern desert of Egypt. Journal of Remote Sensing. 7(1), pp.1 – 13. [Google Scholar] [Crossref]
3. Abedi, M, Norouzi, G.H. and Fathianpour, N. (2013). Fuzzy Outranking Approach: a knowledge-driven method for mineral prospectivity mapping. Int J Appl Earth Obs Geoinf 21:556–567. [Google Scholar] [Crossref]
4. Adeyemo, I. A., Omosuyi G.O. and Ojo B.T. (2017) Groundwater Potential Evaluation in Typical Basement Complex Environment Using GRT Index - A C ase Study of Ipinsa – Okeodu Area, near Akure, Nigeria. Journal of Geoscience and Evironmental Protection, Vol. 5 No. 3. [Google Scholar] [Crossref]
5. Adiat, K.A.N. (2013) Development of Models for Predicting Groundwater Resources Potential of Alluvial Aquifer Using Artificial Intelligence Techniques. Unpublished Ph.d Thesis University Sains Malaysia , p. 4 [Google Scholar] [Crossref]
6. Adiat, K.A.N., Nawawi, M.N.M. and Abdullah, K. (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–A case of predicting potential zones of sustainable ground water resources. J Hydrol 440–441:75–89. [Google Scholar] [Crossref]
7. Adiat, K.A.N., Olayanju, G.M., Omosuyi, G.O. and Ako, B.D. (2009). Electromagnetic Profiling and Electrical Resistivity Soundings in Groundwater Investigation of a Typical Basement Complex – A Case Study of Oda Town South-western Nigeria. Ozean J. Appl. Sci. 2(4): 333-359. [Google Scholar] [Crossref]
8. Akinlalu A.A., Omosuyi G.O., Oni T.E. (2017). Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria. Journal of Astronomy and Geophysics. http://dx.doi.org/10.1016/j.nrjag.2017.04.009. [Google Scholar] [Crossref]
9. Akintorinwa O.J., Atitebi M.O. and Akinlalu A.A. (2020). Hydrogeophysical and aquifer vulnerability zonation of a typical basement. complex terrain: A case study of Odode Idanre southwestern Nigeria. Heliyon 6 (2020) e04549. [Google Scholar] [Crossref]
10. Alabi, A.A., Bello, R. Ogungbe, A.S. and Oyerinde, H.O. (2010). Determination of groundwater potential in Lagos State University, Ojo; Using geoelectric methods ( Vertical electrical sounding and Horizontal profiling). Rep. Opin., 24: 68- 75. [Google Scholar] [Crossref]
11. Albayrak, E. and Erensal, Y. (2004). Using analytic hierarchy process (AHP) to improve human performance: an application of multiple criteria decision making problem. J Intell Manuf 15:491–503. [Google Scholar] [Crossref]
12. Al-Gharni M.A., (2005). Application of Magnetic and Electrical Geophysical Methods in the Exploration of Groundwater Resources of Wadi Malakan, Saudi Arabia. Journal of King Abdulaziz University: Earth Science. 16:67-93. [Google Scholar] [Crossref]
13. Ariyo, S.O. and Adeyemi, G.O. (2009). Role of Electrical Resistivity Method for Groundwater Exploration in Hard Rock Areas: A Case Study from Fidiwo/Ajebo Areas of Southwestern Nigeria. Pac. J. Sci. Technol. 10(1):483-486. [Google Scholar] [Crossref]
14. Arulbalaji, P., and Gurugnanam, B., (2016). An Integrated Study to Assess the Groundwater Potential Zone Using Geospatial Tool in Salem District, South India. J. Hydrogeol. Hydrol. Eng. [Google Scholar] [Crossref]
15. Atenidegbe O.F. and Mogaji, K.A. (2023). Development of Promethee- Entropy data mining model for groundwater potentiality modeling: a case study of multifaceted geologic setting in south-western Nigeria. Acta Geophysica. http//doi.org/10.1007/s11600-023-01095-4. [Google Scholar] [Crossref]
16. Bojadziev, G., and Bojadziev, M. (1998). Fuzzy sets and fuzzy logic applications, Singapore: World Scientific. [Google Scholar] [Crossref]
17. Carranza, E.J.M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, vol. 11. Elsevier, Amsterdam, p. 351 [Google Scholar] [Crossref]
18. Chowdhury, A., Jha, M.K., Chowdary, V.M., Mal, B.C., (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal India. Int. J. Remote Sensing. 30 (1), 231–250. [Google Scholar] [Crossref]
19. Clark, L. (1985) Groundwater Abstraction from Basement Complex Area of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18, 25-34. [Google Scholar] [Crossref]
20. Dobrin, M.B., Savit, C.H., (1988). Introduction to geophysical prospecting. McGraw-Hill Book Co, Singapore. [Google Scholar] [Crossref]
21. Fashae, O.A., Moshood N.T., Talabi A.O,.Adedeji O.I. (2014). Delineation of Groundwater Potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci 4:19-38. https://doi.org 10.1007/s13201-013-0127-9. [Google Scholar] [Crossref]
22. Haujie, D., Zhengdong D. and Feifan D. (2016). Classification of groundwater potential in Chaoyang area based on QUEST algorithm: International Geoscience and Remote Sensing. [Google Scholar] [Crossref]
23. Kaliraj, S. Chandrasekar, N., Magesh, N.S., ( 2013): Identification of potential groundwater recharge zone in vagai upper basin,Tamil Nadu, using GIS- based analytical hierarchical process (AHP) technique. [Google Scholar] [Crossref]
24. Karimi, A.R., Mehrdadi, N., Hashemian, S.J., Nabi-Bidhendi, G.R., and Tavakkoli-Moghaddam, R., (2011). Using of the fuzzy TOPSIS and fuzzy AHP methods for wastewater treatment process selection. International of Academy Research, 3, 780–786. [Google Scholar] [Crossref]
25. Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W.N.A. and Ramli, M.F. (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7:711–724. [Google Scholar] [Crossref]
26. Moayeri M., Shahvarani A., Behzadi M. H. and Hosseinzadeh-Lotfi F. (2015). Comparison of Fuzzy AHP and Fuzzy TOPSIS Methods for Math Teachers Selection. Indian Journal of Science and Technology. Vol 8(13). [Google Scholar] [Crossref]
27. Mogaji, K.A. and Lim, H.S. (2016). Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: GIS-based multi-criteria decision analysis modeling approach. Terr. Atmos. Ocean Sci. (2016). 10.3316/TAO.2016.11.01.02. [Google Scholar] [Crossref]
28. Mogaji, K.A. and Omobude, O.B. (2017). Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria- A GIS-based GODT approach. Journal of Astronomy and Geophysics. 6: 434-451. [Google Scholar] [Crossref]
29. Mogaji, K.A., Lim, H.S. and Abdullah, K. (2014). Modeling groundwater vulnerability prediction using geographic information system (GIS)-based ordered weighted average (OWA) method and DRASTIC model theory hybrid approach. Arab J Geosci. doi:10.1007/s12517-013-1163-3. [Google Scholar] [Crossref]
30. Mogaji, K.A., Lim, H.S. and Abdullah, K. (2015b). Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management. Environ Earth Sci (2015) 73:1217–1230. DOI 10.1007/s12665-014-3476-2. [Google Scholar] [Crossref]
31. Okhue E.T. and Olorunfemi, M.O. (1991). Electrical resistivity investigation of a typical basement complex area- Obafemi Awolowo University campus case study. J. Mining Geol. 27(2):66- 70. [Google Scholar] [Crossref]
32. Omosuyi, G.O. (2010) Geoelectric Assessment of Groundwater Prospect and Vulnerability of Overburden Aquifers at Idanre, Southwestern Nigeria. Ozean Journal of Applied Science, 3, 19-28. [Google Scholar] [Crossref]
33. Omosuyi, G.O. and Oseghale, A. (2012) Groundwater Vulnerability Assessment in Shallow Aquifers Using Geoelectric and Hydrogeologic Parameters at Odigbo, Southwestern Nigeria. Journal of Scientific and Industrial Research, 3, 501-512. [Google Scholar] [Crossref]
34. Omosuyi, G.O., Ojo, J.S. and Enikanselu, P.A. (2003) Geophysical Investigation for Groundwater around Obanla-Obakekere in Akure Area within the Basement Complex of Southwestern Nigeria. Journal of Mining and Geology, 39, 109-116. [Google Scholar] [Crossref]
35. Oni, A.G., Adediran, T.A., Olorunfemi, M.O., Eniola, P.J., (2020). Evaluation of the Groundwater Potential of Modomo, Ile- Ife, Southwest Nigeria, using Integrated Geophysical Techniques. Sustainable water Resources Management. DOI: 10.1007/s40899-02000467-8. [Google Scholar] [Crossref]
36. Ouedraogo I., Defourny P. and Vanclooster M. (2016). Mapping the groundwater vulnerability for pollution at the pan African scale. Science of the Total Environment 544 939–953. [Google Scholar] [Crossref]
37. Oyedele, E. A. A., Oyedele, T. and Oyedele, K., (2013). Geo-electrical data analysis to demarcate groundwater pockets in Ado – Ekiti, southwest, Nigeria. 5(11): 610-611. [Google Scholar] [Crossref]
38. Pazand, K., Hezarkhani, A. and Ghanbari, Y. (2014). Fuzzy analytical hierarchy process and GIS for predictive Cu porphyry potential mapping: a case study in Ahar-Arasbaran Zone (NW, Iran). Arab J Geosci 7: 241–251. [Google Scholar] [Crossref]
39. Radionovs, A. and Uzga- Rebrovs, O. (2016). Fuzzy Analytical hierarchy process for ecological risk assessment. Information Technology and Management Science, 19(1): 16-22 [Google Scholar] [Crossref]
40. Rahaman, M.A. (1988). Recent advances in the study of the basement complex of Nigeria. In: Geological Survey of Nigeria (Ed) Precambrian Geology Nigeria, 11–43 pp. [Google Scholar] [Crossref]
41. Rahmati, O. and Meselle, A. M., (2015). Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Science of the Total Environment 568 (2016) 1110 1123. [Google Scholar] [Crossref]
42. Rahmati, O., Nazari Samani A., Mahdavi, M., Pourghasemi, H. R. and Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8:7059–7071. [Google Scholar] [Crossref]
43. Saaty T. L. (1987). Rank generation, preservation and the reversal in the Analytical Hierarchy Process. Decis. Sci [Google Scholar] [Crossref]
44. Szalai S. and L. Szarka (2008). Geoelectric Prospecting on the classification of surface geoelectric arrays, 56: 159-160. [Google Scholar] [Crossref]
45. Van Laarhoven. P.J.M. and Pedrycs, W. (1983) A Fuzzy Extension of Saaty’s Priority Theory. Fuzzy Set and Systems, 11, 229-224. [Google Scholar] [Crossref]
46. Vander-Velper BPA. (2004) WinRESIST Version 1.0 Resistivity Depth Sounding Interpretation Software M.Sc. Research Project. ITC, Delft Netherland. [Google Scholar] [Crossref]
47. Wright, E.P. and Burgess, W.G. (1992) Hydrogeology of Crystalline Basement Aquifers in Africa. Geological Society London Special Publications, 66, 1-27. https://doi.org/10.1144/GSL.SP.1992.066.01.01. [Google Scholar] [Crossref]
48. Wu, J., Huang, H. and Cao, Q. (2013). Research on AHP with interval-valued intuitionistic fuzzy sets and its application in multi-criteria decision making problems. Appl. Math. Modell. 37, 9898–9909. [Google Scholar] [Crossref]
49. Yousefi, H., Zahedi, S. and Niksokhan, M.K., (2018). Modifying the analysis made by water quality index using multi-criteria decision making methods. Journal of African Earth Sciences 138 (2018) 309-318. [Google Scholar] [Crossref]
50. Zadeh, L.A., “Fuzzy Sets,” Information and Control, vol.8, pp.338-353, 1965. [Google Scholar] [Crossref]
51. Zakir, F.A, Mohammed, H.T., Qari, M.E. Most (1999). A new optimizing technique for preparing lineament density maps. International Journal of Remote Sensing 20(6): 1073-1085. [Google Scholar] [Crossref]
52. Zare, M., Pourghasemi, H.R., Vafakhah, M. and Pradhan, B. (2013) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6:2873–2888. [Google Scholar] [Crossref]