A Critical Review on Vegetable Oils Refining: A Case for Local Reagents Application

Authors

Adeyinka Idowu Alao

Department of Chemical Engineering, Federal University of Technology, Akure, Ondo State (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.1210000247

Subject Category: Engineering

Volume/Issue: 12/10 | Page No: 2865-2879

Publication Timeline

Submitted: 2025-08-26

Accepted: 2025-09-04

Published: 2025-11-17

Abstract

Vegetable oils contain impurities such as free fatty acids, phospholipids, and pigments that require removal through refining to improve its quality and usability. In Nigeria, traditional methods are mostly applied as a result of non-availability of required technology. Also, industrial refining methods often rely on imported chemical reagents, which increase production costs and limit local processing capacity. This review explores procedures, benefits and limitations of both traditional and industrial methods of vegetable oils refining. Also, the potential of locally sourced reagents, such as agricultural waste, as viable alternatives in the chemical and physical refining of vegetable oils are discussed. This will encourage circular economy and promote many of United Nations Sustainable Development Goals (UN SDGs), by using renewable materials in separation processes and adding values to the agricultural wastes. Emphasis is placed on the probable effectiveness, economic advantages, and environmental impact of using indigenous materials such as plant-based precipitants, agricultural waste-based alkali solutions and natural adsorbents for vegetable oils refining. Process optimization would help in providing the best condition at each stage of the refining operation and as well alternative routes based on different refining agents.

Keywords

vegetable oil; refining; local reagents

Downloads

References

1. Gunstone, F. D. (2011). Vegetable Oils in Food Technology: Composition, Properties and Uses, Second Edition, Wiley-Blackwell, Hoboken, New Jersey, USA. [Google Scholar] [Crossref]

2. Gunstone F. (2009). The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses. Wiley-Blackwell Publishers, Hoboken, New Jersey, USA. [Google Scholar] [Crossref]

3. Dijkstra, A. J. (2016). Encyclopedia of Food and Health || Vegetable Oils: Composition and Analysis. Elsevier Publishers (), 357 – 364. doi:10.1016/b978-0-12-384947-2.00708-x [Google Scholar] [Crossref]

4. Bockisch, M. (1998). Fats and Oils Handbook. AOCS Press. Urbana, Illinois, USA [Google Scholar] [Crossref]

5. Mielke, T. (2018). World Markets for Vegetable Oils and Animal Fats. In: Kaltschmitt, M., Neuling, U. (eds) Biokerosene. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53065-8_8 [Google Scholar] [Crossref]

6. Gharby, S. (2022). Refining Vegetable Oils: Chemical and Physical Refining, The Scientific World Journal, 2022(1), 1 – 10. doi:10.1155/2022/6627013 [Google Scholar] [Crossref]

7. Oboulbiga, Y., Sawadogo-Lingani, H., and Traoré, Y. (2021). Evaluation of traditional processing techniques of groundnut oil in Burkina Faso. African Journal of Food Science, 15(9), 293 – 301. [Google Scholar] [Crossref]

8. Adeyeye, S. A. O., Oyewole, O. B., Obadina, A. O., Omemu, A. M., and Olasupo, N. A. (2020). Microbiological safety and quality of traditional oils in Nigeria. Food Control, 110, 107024. https://doi.org/10.1016/j.foodcont.2019.107024 [Google Scholar] [Crossref]

9. Zheng, Z., Liu, Z., and Ma, Y. (2021). Advances in edible oil refining technology: A review. Journal of Oleo Science, 70(2), 133 – 145. [Google Scholar] [Crossref]

10. Mba, O. I., Dumont, M. J., and Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry, A review. Food Bioscience, 10, 26 – 41. https://doi.org/10.1016/j.fbio.2015.01.003 [Google Scholar] [Crossref]

11. Fashina, P., Adeleke, T., Taiwo,W. (2006). Food Processing Technology: Principles and Practice, 3rd Edition. Woodhead Publishers, Cambridge, Cambridgeshire, United Kingdom. [Google Scholar] [Crossref]

12. Haro, A., Tetteh, G. A., and Fiawoto, A. M. (2020). Traditional edible oil production in sub-Saharan Africa: A review of processing techniques and nutritional implications. Journal of Food Research and Nutrition, 4(1), 45 – 54. [Google Scholar] [Crossref]

13. Raffan, S., and Halford, N. G. (2019). Processing of vegetable oils: A review on the impact of refining practices on quality. Food Science and Human Wellness, 8(3), 218 – 229. [Google Scholar] [Crossref]

14. WHO/FAO. (2024). Codex standard for named vegetable oils (Codex Stan 210-1999). World Health Organization/Food and Agriculture Organization of the United Nations. Rome, Italy. https://www.fao.org/fao-whocodexalimentarius/ [Google Scholar] [Crossref]

15. Raffan, S., and Halford, N. G. (2019). Edible oil processing and nutritional quality: Current challenges and future directions. Frontiers in Plant Science, 10, 1295. https://doi.org/10.3389/fpls.2019.01295 [Google Scholar] [Crossref]

16. Adeyeye, S. A. O., Oyedele, O. A., and Abegunde, T. O. (2020). Safety and shelf life evaluation of traditionally and industrially processed vegetable oils in Nigeria. Journal of Food Safety, 40(6), E12868. https://doi.org/10.1111/jfs.12868 [Google Scholar] [Crossref]

17. Gurr, M. I. and Harwood, J. L. (1991). Lipids: An Outline of Their Chemistry and Biochemistry 5th Edition. Chapman and Hall (CRC) Publishers, UK. [Google Scholar] [Crossref]

18. Gunstone, F. D. (2002). Structured and Modified Lipids. Marcel Dekker Publishers, New York City, USA [Google Scholar] [Crossref]

19. Chow, C. K. (2007). Fatty Acids in Foods and Their Health Implications, 3rd Edition. CRC Press, Florida, USA. https://doi.org/10.1201/9781420006902 [Google Scholar] [Crossref]

20. Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N. and Omar, A. K. M. (2009). Application of supercritical CO₂ in lipid extraction – A review. Journal of Food Engineering, 95(2), 240 – 253. https://doi.org/10.1016/j.jfoodeng.2009.06.026 [Google Scholar] [Crossref]

21. Gibon, V. (2012). Palm Oil and Palm Kernel Oil Refining and Fractionation Technology: Palm Oil; Lai, O. M., Tan, C. P. and Akoh, C. C. (Editors). AOCS Press, Urbana, Illinois, USA. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3 [Google Scholar] [Crossref]

22. Gharby S., Hajib A., Ibourki M., Sakar E. H., Nounah I., Moudden H. E., Elibrahimi M., and Harhar H. (2021). Induced changes in olive oil subjected to various chemical refining steps: a comparative study of quality indices, fatty acids, bioactive minor components, and oxidation stability kinetic parameters. Chemical Data Collections, 33, 100702, https://doi.org/10.1016/j.cdc.2021.100702 [Google Scholar] [Crossref]

23. Reeves, C. J., Menezes, P. L., Jen, T. C. and Lovell, M. R. (2015). The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribology International, 90, 123 – 134. https://doi.org/10.1016/j.triboint.2015.04.021 [Google Scholar] [Crossref]

24. Syed, A. (2016). Oxidative Stability and Shelf Life of Vegetable Oils: Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Min Hu, Charlotte Jacobsen (Editors). AOCS Press, 187 – 207. https://doi.org/10.1016/B978-1-63067-056-6.00004-5 [Google Scholar] [Crossref]

25. Sheil, D., Casson, A., Meijaard, E., van Noordwijk, M., Gaskell, J., Sunderland-Groves, J., Werts, K. and Kanninen, M. (2009). The impact and opportunities of oil palm in Southeast Asia: What do we know and what do we need to know? Paper 51. Center for International Forestry Research (CIFOR) Publications, Bogor, Indonesia. https://doi.org/10.17528/cifor/ 002792 [Google Scholar] [Crossref]

26. Schnieder S. L. (2006). Tropical Oils: Composition, Properties and Uses. Springer Science and Business Media, Berlin/Heidelberg, Germany. [Google Scholar] [Crossref]

27. Ayu, D. F., Andarwulan, N., Hariyadi, P. and Purnomo, E. H. (2017). Photo-oxidative changes of red palm oil as affected by light intensity. International Food Research Journal, 24(3), 1270 – 1277. [Google Scholar] [Crossref]

28. Hui, Y. H. (2005). Bailey’s Industrial Oil and Fat Products: Edible Oil and Fat Products - Processing Technologies, 6th Edition, Volume 5, Wiley-Interscience Publishers, New York City, USA. [Google Scholar] [Crossref]

29. Lamas D. L., Constenla D. T., Raab D. (2016). Effect of degumming process on physicochemical properties of sunflower oil. Biocatalysis and Agricultural Biotechnology, 6, 138 – 143. doi: 10.1016/j.bcab.2016.03.007. [Google Scholar] [Crossref]

30. Evrard, J., Pages-Xatart-Pares, X., Argenson, C. and Morin, O. (2007). Processes for obtaining and nutritional compositions of sunflower, olive and rapeseed oils. Nutrition and Dietetics Notebooks, 42 (1), 13 – 23. https://doi.org/10.1016/S0007-9960(07)91235-3 [Google Scholar] [Crossref]

31. Adeyeye, S. A. O., Adebayo-Oyetoro, A. O., and Ogunbanwo, S. T. (2020). Microbiological quality, physicochemical characteristics and sensory evaluation of traditionally processed palm oil. Journal of Food Safety and Hygiene, 6(3), 107 – 115. [Google Scholar] [Crossref]

32. Nzeka, U. M. (2017). Nigeria edible oils sector update. USDA Foreign Agricultural Service, Global Agricultural Information Network (GAIN) Report. Retrieved from https://www.fas.usda.gov/ [Google Scholar] [Crossref]

33. Ajayi, O. B., Adeleke, R. A., and Ogunniyi, D. S. (2023). Hybrid innovations for sustainable oil extraction from underutilized seeds in sub-Saharan Africa. Renewable Agriculture and Food Systems, 38(1), e14. https://doi.org/10.1017/raf.2022.30 [Google Scholar] [Crossref]

34. Chew S. C., Nyam K. L. (2020). Refining of edible oils: Lipids and Edible Oils; Charis M. Galanakis (Editor). Academic Press, Cambridge, MA, USA, 213 – 241. https://doi.org/10.1016/B978-0-12-817105-9.00006-9. [Google Scholar] [Crossref]

35. Tasan, M. and Demirci, M. (2005). Total and individual tocopherol contents of sunflower oil at different steps of refining. European Food Research and Technology, 220(3-4), 251–254, https://doi. org/10.1007/s00217-004-1045-8, 2-s2.0-17144397594 [Google Scholar] [Crossref]

36. Manjula S. and Subramanian R. (2006). Membrane technology in degumming, dewaxing, deacidifying, and decolorizing edible oils. Critical Reviews in Food Science and Nutrition, 46(7), 569 – 592, https://doi.org/10.1080/10408390500357746, 2-s2.0-33748546928. [Google Scholar] [Crossref]

37. Dumont, M. J. and Narine, S. S. (2007). Soapstock and Deodorizer Distillates from North American Vegetable Oils: review on their Characterization, extraction and utilization. Food Research International, 40(8), 957 – 974. https://doi.org/10.1016/j.foodres.2007.06.006 [Google Scholar] [Crossref]

38. Di Giovacchino L., Mucciarella M. R., Costantini N., Ferrante M. L. and Surricchio G. (2002). Use of nitrogen to improve stability of virgin olive oil during storage. Journal of the American Oil Chemists Society, 79(4), 339 – 344. https://doi.org/10.1007/s11746-002-0485-7, 2-s2.0-0036537588 [Google Scholar] [Crossref]

39. Yang J.-G., Wang Y.-H., Yang B., Mainda G. and Guol Y. (2006). Degumming of vegetable oil by a new microbial lipase. Food Technology and Biotechnology, 44(1), 101 – 104. [Google Scholar] [Crossref]

40. Gharby S., Harhar H., Mamouni R., Matthäus B., Ait Addi E. H. and Charrouf Z. (2016). Chemical characterization and kinetic parameter determination under rancimat test conditions of four monovarietal virgin olive oils grown in Morocco. Oilseeds and fats, Crops and Lipids, 23(4), A401. doi: 10.1051/ocl/2016014 [Google Scholar] [Crossref]

41. Silva, S. M., Sampaio, K. A., Ceriani, R., Verhé, R., Stevens, C., De Greyt, W. and Meirelles, A. J. A. (2014). Effect of type of bleaching earth on the final color of refined palm oil. LWT - Food Science and Technology, 59(2, Part 2), 1258 – 1264. https://doi.org/10.1016/j.lwt. 2014.05.028. [Google Scholar] [Crossref]

42. Ortega-García J., Gámez-Meza N., Noriega-Rodriguez J. A., Dennis-Quiñonez O., García-Galindo H. S., Angulo-Guerrero J. O. and Medina-Juárez L. A. (2006). Refining of high oleic safflower oil: effect on the sterols and tocopherols content, European Food Research and Technology. 223(6), 775 – 779, https://doi.org/10.1007/s00217-006-0267-3, 2-s2.0-33748992041 [Google Scholar] [Crossref]

43. Ghazani, S. M. and Marangoni, A. G. G. (2013). Minor components in canola oil and effects of refining on these constituents: a review. Journal of the American Oil Chemists Society, 90(7), 923 – 932. https://doi.org/10.1007/s11746-013-2254-8, 2-s2.0-84879684845. [Google Scholar] [Crossref]

44. Van-Nieuwenhuyzen, W. and Tomas, M. C. (2008). Update on vegetable lecithin and phospholipid technologies. European Journal of Lipid Science and Technology, 110(5), 472 – 486. http://dx.doi.org/10.1002/ejlt.200800041 [Google Scholar] [Crossref]

45. Delgado, A., Al-Hamimi, S., Ramadan, M. F., De-Wit, M., Durazzo, A., Nyam, K. L. and Issaoui, M. (2020). Contribution of tocols to food sensorial properties, stability, and overall quality. Journal of Food Quality, 2020(1), 1 – 8. https://doi.org/10.1155/2020/8885865 [Google Scholar] [Crossref]

46. Zufarov, O., S. Schmidt, and S. Sekretar, “Degumming of Rapeseed and sunflower oils,” Acta Chimica Slovaca, vol. 1, No. 1, pp. 321–328, 2008. [Google Scholar] [Crossref]

47. Dijkstra, A. J. (2010). Enzymatic degumming. European Journal of Lipid Science and Technology, 112(11), 1178 – 1189. https://doi.org/10.1002/ejlt.201000320 [Google Scholar] [Crossref]

48. De, B. K. and Patel, J. D. (2010). Effect of different degumming processes and some nontraditional neutralizing agent on refining of RBO. Journal of Oleo Science, 59(3), 121 – 125. https://doi.org/10.5650/jos.59.121 [Google Scholar] [Crossref]

49. Issaoui, M. and Delgado, A. M. (2019). Grading, labeling and Standardization of edible oils: In Fruit Oils - Chemistry and Functionality, M. F. Ramadan (Editor). Springer, Cham, Switzerland. [Google Scholar] [Crossref]

50. Hashim, K., Tahiruddin, S. and Asis, A. J. (2012). Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia: Palm Oil; Lai, O. M., Tan, C. P. and Akoh, C. C. (Editors). AOCS Press, https://doi.org/10.1016/B978-0-9818936-9-3.50011-3. [Google Scholar] [Crossref]

51. Dijkstra, A. and Man, Y. B. C. (2008). Physicochemical properties and stability of palm kernel oil. Food Chemistry, 123(3), 659 – 663. https://doi.org/10.1016/j.foodchem.2010.05.051 [Google Scholar] [Crossref]

52. Wibisono, Y., Nugroho, W. A. and Chung, T.-W. (2014). Dry Degumming of corn-oil for biodiesel using a tubular ceramic membrane. Procedia Chemistry, 9, 210 – 219. https://doi.org/10.1016/j. proche.2014.05.025 [Google Scholar] [Crossref]

53. Clausen, K. (2001). Enzymatic oil-degumming by a novel microbial Phospholipase. European Journal of Lipid Science and Technology, 103(6), 333 – 340. https://doi.org/10.1002/1438-9312(200106)103:6%3C333::AID-EJLT333%3E3.0.CO;2-F [Google Scholar] [Crossref]

54. Dijkstra, A. J. (2017). About water degumming and the hydration of non-hydratable phosphatides. European Journal of Lipid Science and Technology, 119(9), pp. 1600496–1600506. http://dx.doi.org/10.1002/ejlt.201600496 [Google Scholar] [Crossref]

55. Gharby, S., Harhar, H., Farssi, M., Taleb, A. A., Guillaume, D. and Laknifli, A. (2018). Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. Oilseeds and fats, Crops and Lipids, 25(3), A303, 1 – 7. https://doi.org/10.1051/ocl/ 2018013 [Google Scholar] [Crossref]

56. Essid, K., Chtourou, M., Trabelsi, M. and Frikha, M. H. (2009). Influence of the neutralization step on the oxidative and thermal stability of acid olive oil. Journal of Oleo Science, 58(7), 339 – 346. https://doi.org/10.5650/jos.58.339 [Google Scholar] [Crossref]

57. Ruiz-M´endez, M. V., M´arquez-Ruiz, G. and Dobarganes, M. C. (1997). Relationships between quality of crude and refined edible oils based on quantitation of minor glyceridic compounds. Food Chemistry, 60(4), 549 – 554. [Google Scholar] [Crossref]

58. Yahaya, L. E., Ajao, A. A., Jayeola, C. O., Igbinadolor, R. O. and Mokwunye, F. C. (2012). Soap Production from Agricultural Residues - a Comparative Study, American Journal of Chemistry, 2(1), 7 – 10. doi: 10.5923/j.chemistry.20120201.02. [Google Scholar] [Crossref]

59. Ajongbolo, K. (2020). Chemical Properties of Local Black Soap Produced from Cocoa Pod Ash and Palm Oil Waste. International Journal of Trend in Scientific Research and Development, 4(6), 713 – 715. https://www.ijtsrd.com/papers/ijtsrd33487.pdf paper [Google Scholar] [Crossref]

60. Nafisah, U., Nugroho, P. S. A., Setyorini, W. (2024). Liquid Soap Formulation from Cocoa Pod Husk Extract (Theobroma Cacao L.) and Antioxidant Activity. International Journal of Pharmaceutical and [Google Scholar] [Crossref]

61. Gharby Y. (2022). Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology, 109(4), 289 – 295. https://doi.org/10.1002/ejlt.200600211 [Google Scholar] [Crossref]

62. Monte, M. L., Monte, M. L., Pohndorf, R. S., Crexi, V. T. and Pinto, L. A. A. (2015). Bleaching with blends of bleaching earth and activated carbon reduces color and oxidation products of carp oil. European Journal of Lipid Science and Technology, 117(6), 829 – 836. https://doi.org/10.1002/ejlt. 201400223 [Google Scholar] [Crossref]

63. Zschau, W. (2001). Bleaching of edible fats and oils. European Journal of Lipid Science and Technology, 103(8), 505 – 551. https://doi.org/10.1002/1438-9312(200108)103:8%3C505::AID-EJLT505%3E3.0.CO;2-7 [Google Scholar] [Crossref]

64. Liu, Y., Huang, J. and Wang, X. (2008). Adsorption isotherms for bleaching soybean oil with activated attapulgite. Journal of The American Oil Chemists Society, 85(10), 979 – 984. https://doi.org/10.1007/s11746-008-1278-y [Google Scholar] [Crossref]

65. Amari, A., Gannouni, H., Khan, M. I., Almesfer, M. K., Elkhaleefa, A. M. and Gannouni, A. (2018). Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye. Applied Sciences, 8(11), 2302 – 2311. https://doi.org/ 10.3390/app8112302 [Google Scholar] [Crossref]

66. Usman, M. A., Ekwueme, V. I., Alaje, T. O. and Mohammed, A. O. (2012). Characterization, acid activation and bleaching performance of Ibeshe clay, Lagos, Nigeria. ISRN Ceramics, 2012(3), 1 – 5. doi: 10.5402/2012/658508 [Google Scholar] [Crossref]

67. Gnanaprakasam, A., Sivakumar, V. M., Surendhar, A., Thirumarimurugan, M. and Kannadasan, T. (2013). Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review. Journal of Energy, 2013, 1–10. https://doi.org/10.1155/2013/926392 [Google Scholar] [Crossref]

68. Musah, M., Azeh, Y., Mathew, J. T., Umar, M. T., Abdulhamid, Z. and Muhammad, A. I. (2022). Adsorption Kinetics and Isotherm Models: A Review. Aliphate Journal of Science and Technology, 1, 20 – 26. https://dx.doi.org/10.4314/cajost.v4i1.3 [Google Scholar] [Crossref]

69. Omar, S., Girgis, B. and Taha, F. (2003). Carbonaceous materials from seed hulls for bleaching of vegetable oils. Food Research International, 36(1), 11 – 17. https://doi.org/10.1016/S0963-9969(02)00102-3. [Google Scholar] [Crossref]

70. Amany, A. M. M., Arafat, S. A. and Soliman, H. M. (2014). Effectiveness of olive-waste ash as an adsorbent material for the regeneration of fried sunflower oil. Current Science International, 3(4), 311 – 319. [Google Scholar] [Crossref]

71. Ismail, M. I., Muhammad, H., Hamidon, M., Zulhilmie, M. and Sofi, S. (2016). Renewable bleaching alternatives (RBA) for palm oil refining from waste materials. Journal of Applied Environmental and Biological Sciences, 6(7), 52 – 57. [Google Scholar] [Crossref]

72. Salawudeen, T. O., Alade, A. O., Arinkoola, A. O. and Jimoh, M. O. (2016). Potential application of oyster shell as adsorbent in vegetable oil refining. Advances in Research, 6(6), 1 – 8. http://dx.doi.org/ 10.9734/AIR/2016/23709 [Google Scholar] [Crossref]

73. Chairgulprasert, V. and Madlah, P. (2018). Removal of Free Fatty Acid from Used Palm Oil by Coffee Husk Ash. Science and Technology Asia, 23(3), 1 – 9. https://ph02.tci-thaijo.org/index.php/ SciTechAsia/article/view/147219 [Google Scholar] [Crossref]

74. Butt, F., Syed, M. A. and Shaik, F. (2020). Palm Oil Bleaching Using Activated Carbon Prepared from Neem Leaves and Waste Tea. International Journal of Engineering Research and Technology. 13(4), 620 – 624. https://dx.doi.org/10.37624/IJERT/13.4.2020.620-624 [Google Scholar] [Crossref]

75. Zheng, H., Liu, L. and Li, Y. (2021). Advances in deodorization technology in vegetable oil refining. LWT – Food Science and Technology, 136, 110354. https://doi.org/10.1016/j.lwt. 2020.110354 [Google Scholar] [Crossref]

76. Zheng, Y., Wang, Y., and Zhang, L. (2021). A comparative analysis of bleaching and deodorization stages in vegetable oil refining. Food Processing and Preservation, 45(1), e15120. [Google Scholar] [Crossref]

77. Hussain-Sherazi, S. T., Mahesar, S. A. and Sirajuddin, A. (2016). Vegetable Oil Deodorizer Distillate: A Rich Source of the Natural Bioactive Components. Journal of Oleo Science, 65(12), 957 – 966. https://doi.org/10.5650/jos.ess16125 [Google Scholar] [Crossref]

78. Siragakis G., Antonopoulos K., Valet N., and Spiratos D. (2006). Olive oil and pomace olive oil processing. Grasas y Aceites. 57(1), 56 – 67, https://doi.org/10.3989/gya.2006.v57.i1.22, 2-s2.0-33845755921 [Google Scholar] [Crossref]

79. Chew S.-C., Tan C.-P., Long K., and Nyam K.-L. (2016). Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus) seed oil. Industrial Crops and Products. 89, 59 – 65, https://doi.org/10. 1016/j.indcrop.2016.05.002, 2-s2.0-84965104440 [Google Scholar] [Crossref]

80. Cheng Z., Liu G. and Wang L. (2017). Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Comprehensive Reviews in Food Science and Food Safety, 16(2), 263 – 281, https://doi.org/10.1111/1541-4337.12251, 2-s2.0-85011301361 [Google Scholar] [Crossref]

81. Chew S.-C., Tan C.-P., and Nyam K.-L. (2017). Application of response surface methodology for optimizing the deodorization parameters in chemical refining of kenaf seed oil, Separation and Purification Technology. 184, 144–151, https://doi.org/10.1016/j.seppur.2017.04.044, 2-s2.0-85018987183. [Google Scholar] [Crossref]

82. Haro, M. A., Rubio, M., and Pérez-Bibbins, B. (2020). Nutritional comparison of traditionally and industrially refined oils. Foods, 9(2), 134. https://doi.org/10.3390/foods9020134 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles