A Permeable Vertical Cone Immersed in a Porous Media Saturated with a Nanofluid and Surrounded by a Natural Convection Boundary Layer of a Non-Newtonian Fluid

Authors

Shehzad Ali

Mathematics Department of K. G. K. College Moradabad (India)

Dr P. K. Shukla

Mathematics Department of K. G. K. College Moradabad (India)

Article Information

DOI: 10.51244/IJRSI.2025.1210000236

Subject Category: Mathematics

Volume/Issue: 12/10 | Page No: 2756-2769

Publication Timeline

Submitted: 2025-10-23

Accepted: 2025-10-28

Published: 2025-11-15

Abstract

A non-Newtonian fluid's free convection boundary-layer flow over a permeable vertical cone embedded in a porous media saturated with a nanofluid was analyzed in order to determine the impact of uniform transpiration velocity. The effects of thermophoresis and Brownian motion are included in the nanofluid model. An effective implicit, iterative, finite-difference method is used to numerically solve the governing partial differential equations once they have been converted into a collection of non-similar equations.
Work that has already been published is compared. In order to demonstrate intriguing aspects of the solutions, a parametric investigation of the physical parameters is carried out, and a typical set of numerical results for the velocity, temperature, and volume fraction profiles as well as the local Nusselt and Sherwood numbers are graphically displayed.

Keywords

Natural convection, thermophoresis, porous medium

Downloads

References

1. H.T.Chen,C.K.Chen,Free convection of non Newtonian fluids along a vertical plate embedded in a porous medium,Trans.ASME, J. Heat Transfer 110 (1988) 257–260. [Google Scholar] [Crossref]

2. K.N.Mehta,K.N. Rao,Buoyancy-induced flow of non-Newtonian fluids over a non-isothermal horizontal plate embedded in a porous medium, Internat. J.Engrg.Sci.32 (1994) 521–525. [Google Scholar] [Crossref]

3. K.A. Yih, uniform latera lmass flux effect on natural convection of non-Newtonian fluids over a cone in porous media, Int.Commun. Heat MassTransfer 25 (7) (1998) 959–968. [Google Scholar] [Crossref]

4. M.A. Mansour, R.S.R. Gorla, Mixed convection–radiation interaction in power-law fluids along a nonisothermal wedge embeddedin a porous medium, Transp.Porous Media30 (1998) 113–124. [Google Scholar] [Crossref]

5. A.J. Chamkha, J. Al-Humoud, Mixed convection heat and mass transfer of non-Newtonian fluids from a permeable surface embedded in a porous medium,Int.J.Numer.Methods Heat Fluid Flow17 (2007) 195–212. [Google Scholar] [Crossref]

6. M.A. EL-Hakiem, Radiative effects on non-Darcy natural convection from a heated vertical plate in saturated porous media with mass transfer for non-Newtonian fluid, J. Porous Media 12 (2008) 89–99. [Google Scholar] [Crossref]

7. P.S. Datti, K.V. Prasad, Non-Newtonian power law fluid flow and heat transfer in a porous medium over a non-isothermal stretchings heet, Int.J. Fluid Mech.Res.35 (2008) 417–433. [Google Scholar] [Crossref]

8. Ali J. Chamkha,Heat and mass transfer of a non-Newtonian fluid concentration and heat source or sink,WSEAS Trans.Heat MassTrans.1(5) (2010) 11–20. [Google Scholar] [Crossref]

9. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME FED, vol.231/MD, vol. 66,1995, pp. 99–105. [Google Scholar] [Crossref]

10. S.U.S. Choi, Z.G. Zhang, W.Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nano tube suspensions,Appl.Phys.Lett. 79 (2001) 2252–2254. [Google Scholar] [Crossref]

11. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei7(1993)227–233. [Google Scholar] [Crossref]

12. J. Buongiorno, W. Hu , Nano fluid coolants for advanced nuclear power plants ,Paperno.5705, in: Proceedings of ICAPP’05, Seoul,May 15 19, 2005.A.M. Rashadetal./Computers and Mathematics with Applications 62 (2011) 3140–3151 3151 [Google Scholar] [Crossref]

13. K Khanafer, K. Vafai, M. Light stone, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing a nonfluids, Int.J.Heat Mass Transfer 46(2003) 3639–3653. [Google Scholar] [Crossref]

14. J .Buongiorno ,Convective transport in nanofluids, ASME J.Heat Transfer 128 (2006) 240–250. [Google Scholar] [Crossref]

15. H. F. Oztop ,E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nano fluids, Int.J.Heat Fluid Flow 29 (2008)1326–1336. [Google Scholar] [Crossref]

16. D.A. Nield, A.V. Kuznetsov, The Cheng- Minkowycz problem for natural convective boundary laye rflow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer 52 (2009) 5792–5795. [Google Scholar] [Crossref]

17. A.V. Kuznetsov, D. A. Nield, Natural convective boundary-layer flow of a287 nanofluid past a vertical plate, Int. J. Thermal Sci.49 (2010) 243–247. [Google Scholar] [Crossref]

18. Syakila Ahmed, I. Pop, Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids, Int. CommonHealth Mass Transfer 37(2010) 987–991. [Google Scholar] [Crossref]

19. A. J. Chamkha, R. S. R. Gorla, K. Ghodeswar, Non-similar solution for natural convective boundary layer flow over a sphere embeddedin a Porous medium saturated with a nanofluid,Transp. Porous Media (2010). [Google Scholar] [Crossref]

20. R.S.R. Gorla, S.M. M. EL Kabeir, A. M. Rashad, Heat transfer in the boundary layer on a stretching circular cylinder in a nanofluid, J. Thermophys. Heat Transfer 25 (1) (2011)183–186. [Google Scholar] [Crossref]

21. R.S.R. Gorla, AliJ. Chamkha, A.M. Rashad, Mixed convective boundary layer flow over a vertical wedge embedded in a Porous medium saturated with a nano fluid, J. Nanoscale Res.Lett.6 (207) (2011) 1–9. [Google Scholar] [Crossref]

22. A. J. Chamkha, A.M. Aly, H. Al-Mudhaf, Laminar MHD mixed convection flow of a nanofluid along a stretching permeable surface in the presence of heat generation or absorption effects, Int.J. Microscale Nano scale Thermal Fluid Transport Phenomena 2 (2011) (Article 3). [Google Scholar] [Crossref]

23. A. J. Chamkha, S. Abbasbandy, A. M. Rashad, K. Vajravelu, Radiation effects on mixed convection over a wedge embedded in a Porous medium filled with a nanofluid, Transp. Porous Media (inpress). [Google Scholar] [Crossref]

24. A. J. Chamkha, A. M. Rashad, Natural convection from a vertical permeable cone in nano fluid saturated porous media for uniform heat and nano particles volume fraction fluxes ,Int. J. Numer. Methods Heat Fluid Flow (inpress). [Google Scholar] [Crossref]

25. R. H. Christopher ,S. Middleman, Power-law flow through a packed tube, I & EC Fundamentals, vol.4,1965 ,pp. 422–426. [Google Scholar] [Crossref]

26. R. V. Dharmadhikari, D .D. Kale, Flow of non-Newtonian fluids through porous media ,Chem. Eng. Sci .40 (1985) 527–529. [Google Scholar] [Crossref]

27. F. G. Blottner, Finite- difference methods of solution of the boundary- layer equations, AIAAJ. 8 (1970) 193–205. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles