Comparative Study of Myocardial Biomarkers Among Women with and Without Polycystic Ovarian Syndrome (PCOS) in Nigeria

Authors

Ohikere, O. P.

Department of Medical Laboratory Science, Igbinedion University, Okada, Edo State, Nigeria. (Nigeria)

Mokwenye, N. V.

Department of Medical Laboratory Science, Igbinedion University, Okada, Edo State, Nigeria. (Nigeria)

Emokpae A. M.

Department of Medical Laboratory Science, University of Benin, Benin City, Edo State, Nigeria. (Nigeria)

Ige, I. P., (ORCID)

Department of Medical Laboratory Science, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria. (Nigeria)

Adewole, A. A. (ORCID)

Obstretics and Gynaecology department, Federal Teaching Hospital, Lokoja, Kogi State, Nigeria. (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.12110097

Subject Category: Medical Science

Volume/Issue: 12/11 | Page No: 1041-1064

Publication Timeline

Submitted: 2025-11-25

Accepted: 2025-12-01

Published: 2025-12-10

Abstract

Polycystic Ovarian Syndrome (PCOS) is a common endocrinopathy associated with chronic low-grade inflammation, insulin resistance, and dyslipidemia, all of which elevate the long-term risk of cardiovascular disease (CVD). While subclinical myocardial injury is recognized in Western populations with PCOS, data from Nigerian women, who may face distinct genetic and environmental risk factor profiles, remain scarce. This study aims to compare the circulating levels of specific myocardial injury biomarkers between Nigerian women with and without PCOS. This was a case-control study conducted at selected healthcare centers and fertility clinics in Lokoja, Okene, and Anyigba, Kogi State, Nigeria, where PCOS cases are commonly reported. This study comprises of 150 samples, with 110 women diagnosed with PCOS based on the Rotterdam criteria (PCOS Group) were recruited and compared to 40 age- and BMI-matched healthy women (Control Group). Fasting blood samples were analyzed for quantitative measurement of three cardiac biomarkers: Myoglobin (MYO), Cardiac Troponin I (cTnI), and Creatine Kinase-MB (CK-MB). Anthropometric data and standard lipid profiles were also collected. Data were analyzed using independent samples t-tests and multivariate analysis of variance (MANOVA), with significance set at p < 0.05. The multivariate test using Pillai’s Trace indicated a significant overall group effect, V = 0.202, F(3, 146) = 12.32, p < 0.001, partial η² = 0.202, suggesting that the combined biomarker profile differed between groups. Follow-up univariate ANOVAs revealed that women with PCOS had significantly higher mean serum levels of cTnI (F(1,148) = 5.91, p = .016, partial η² = 0.038), CK-MB (F(1,148) = 20.43, p < 0.001, partial η² = .121), and MYO (F(1,148) = 21.65, p < .001, partial η² = 0.128) compared to controls. The estimated marginal means confirmed consistently elevated concentrations of all three biomarkers in the PCOS group (MYO: 57.88 ± 3.51 ng/ml; CK-MB: 1.87 ± 0.08 ng/ml; cTnI: 0.074 ± 0.005 ng/ml) relative to the control group (MYO: 26.28 ± 5.82 ng/ml; CK-MB: 1.21 ± 0.13 ng/ml; cTnI: 0.053 ± 0.008 ng/ml). Collectively, these findings indicate that PCOS is associated with significantly elevated serum concentrations of myocardial biomarkers, suggesting the presence of early or subclinical myocardial stress in affected women, independent of age matching. Furthermore, regression analysis suggested that significant factor, like MYO was an independent predictor of the outcome variable. Nigerian women with PCOS exhibit significantly elevated circulating levels of myocardial biomarkers (MYO, cTnI, and CK-MB), suggesting the presence of chronic, subclinical myocardial injury in this population. These findings underscore the need for early and aggressive cardiovascular risk assessment and management strategies for women with PCOS in the Nigerian clinical setting.

Keywords

Myocardial, PCOS, Hyperinsulinemia, Endocrine, Metabolic, BMI

Downloads

References

1. Guan, C., Zahid, S., Minhas, A. S., Ouyang, P., Vaught, A., Baker, V. L., & Michos, E. D. (2022). Polycystic ovary syndrome: a “risk-enhancing” factor for cardiovascular disease. Fertility and Sterility, 117(5), 924–935. https://doi.org/10.1016/j.fertnstert.2022.03.009. [Google Scholar] [Crossref]

2. Kimenai, D. M., Shah, A. S. V., McAllister, D. A., Lee, K. K., Tsanas, A., Meex, S. J. R., Porteous, D. J., Hayward, C., Campbell, A., Sattar, N., Mills, N. L., & Welsh, P. (2021). Sex Differences in Cardiac Troponin I and T and the Prediction of Cardiovascular Events in the General Population. Clinical Chemistry, 67(10), 1351–1360. https://doi.org/10.1093/clinchem/hvab109. [Google Scholar] [Crossref]

3. Omran, F., Kyrou, I., Osman, F., Lim, V. G., Randeva, H. S., & Chatha, K. (2022). Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. International Journal of Molecular Sciences, 23(10), 5680. https://doi.org/10.3390/ijms23105680. [Google Scholar] [Crossref]

4. Lo, A. C. Q., Chu, C., & Oliver-Williams, C. (2023). Cardiovascular disease risk in women with hyperandrogenism, oligomenorrhea/menstrual irregularity or polycystic ovaries (components of polycystic ovary syndrome): a systematic review and meta-analysis. European Heart Journal Open, 3(4). https://doi.org/10.1093/ehjopen/oead061. [Google Scholar] [Crossref]

5. Emokpae, M. A., Van-Lare, T. O., & Babatunde, E. M. (2024). Cardiovascular Risk is Independently Associated with Body Mass Index in Women with Polycystic Ovarian Syndrome in Lagos, Nigeria. Fertility & Reproduction, 06(03), 143–149. https://doi.org/10.1142/s2661318224500208. [Google Scholar] [Crossref]

6. Manjula Nandakumar, Das, P., Thozhukat Sathyapalan, Butler, A. E., & Atkin, S. L. (2024). Cardiovascular Risk Biomarkers in Women with and Without Polycystic Ovary Syndrome. Biomolecules, 15(1), 4–4. https://doi.org/10.3390/biom15010004. [Google Scholar] [Crossref]

7. Christakou, C. D., Christakou, C., Siozopoulou, V., Koutserimpas, C., Datsiou, C., Giannoulis, G., Tsakouras, P., Chatzizisis, Y. S., & Christou, K. (2022). Polycystic Ovary Syndrome as a Cardiovascular Disease Risk Factor. Current Cardiology Reports, 24(12), 1735–1744. [Google Scholar] [Crossref]

8. Tsilidis, K. K., Rohde, L. A., Khankari, N. K., & Eeles, R. A. (2020). Genetic Polymorphisms and Risk of Type 2 Diabetes: An Umbrella Review of Meta-analyses. Diabetes, 69(11), 2253–2264. [Google Scholar] [Crossref]

9. Escobar-Morreale, H. F. (2018). Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 14(5), 270–284. https://doi.org/10.1038/nrendo.2018.24 [Google Scholar] [Crossref]

10. Anagnostis, P., Tarlatzis, B. C., & Kauffman, R. P. (2018). Polycystic ovarian syndrome (PCOS) and cardiovascular disease: A state-of-the-art review. Steroids, 133, 57-64. [Google Scholar] [Crossref]

11. Tay, C. T., Teede, H. J., Laven, J. S. E., Dokras, A., Shah, D., Morin-Papunen, L., & the PCOS Guideline Consortium. (2024). Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Journal of the American Heart Association / Human Reproduction (summary). https://doi.org/10.1161/JAHA.123.033572. [Google Scholar] [Crossref]

12. Makwe, C. C., Balogun, M. K., Adewunmi, A. C., & Olayemi, O. (2023). The Nigeria-PEP Study: Prevalence and phenotypes of PCOS in Nigerian women. Journal of the Endocrine Society, 7(10), A696. https://doi.org/10.1210/jendso/bvad114.1668 [Google Scholar] [Crossref]

13. Dutta, C., Banerjee, S., & Dey, P. (2024). Beyond hormones: A systematic review of cardiovascular disease risk in women with PCOS. Cureus, 16(4), e61697. https://doi.org/10.7759/cureus.61697 [Google Scholar] [Crossref]

14. Osibogun, O., Ogunmoroti, O., & Michos, E. D. (2020). Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention. Trends in Cardiovascular Medicine, 30(7), 399–404. https://doi.org/10.1016/j.tcm.2019.08.010. [Google Scholar] [Crossref]

15. Dong, J., & Wang, Z. (2023). Polycystic ovary syndrome: Pathophysiology and therapeutic strategies. (Review). [Article]. Retrieved from PubMed Central. [Google Scholar] [Crossref]

16. Christ, J. P., Dewailly, D., & Teede, H. (2023). Current guidelines for diagnosing PCOS: A review. Clinical reviews and summaries. Retrieved from PubMed Central. [Google Scholar] [Crossref]

17. Teede, H. J., Misso, M. L., Costello, M. F., Dokras, A., Laven, J., Moran, L., Piltonen, T., Norman, R. J., & International PCOS Guideline Development Group. (2023). Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Human Reproduction, 38(9), 1655–1679. https://doi.org/10.1093/humrep/deac093. [Google Scholar] [Crossref]

18. World Health Organization (WHO, 2023). Polycystic Ovary Syndrome. Retrieved 20 September 2024. [Google Scholar] [Crossref]

19. Joham, A. E., Ranasinha, S., Zoungas, S., Moran, L. J., & Teede, H. J. (2022). Lifestyle management and fertility in women with PCOS. Human Reproduction Update, 28(4), 563–579. https://doi.org/10.1093/humupd/dmac010 [Google Scholar] [Crossref]

20. Salari, N., Anisodowleh Nankali, Ghanbari, A., Jafarpour, S., Ghasemi, H., Sadat Dokaneheifard, & Mohammadi, M. (2024). Global prevalence of polycystic ovary syndrome in women worldwide: a comprehensive systematic review and meta-analysis. Archives of Gynecology and Obstetrics, 310(3). https://doi.org/10.1007/s00404-024-07607-x. [Google Scholar] [Crossref]

21. Stener-Victorin, E., Teede, H., Norman, R. J., Legro, R., Goodarzi, M. O., Dokras, A., Laven, J., Hoeger, K., & Piltonen, T. T. (2024). Polycystic ovary syndrome. Nature Reviews. Disease Primers, 10(1), 27. https://doi.org/10.1038/s41572-024-00511-3. [Google Scholar] [Crossref]

22. Eisner, J. R., Kaur, K., & Dokras, A. (2023). The role of the hypothalamic-pituitary-ovarian axis in polycystic ovary syndrome. Nature Reviews Endocrinology, 19(5), 278–293. https://doi.org/10.1038/s41574-023-00860-7 [Google Scholar] [Crossref]

23. Sova, H., Unkila-Kallio, L., Tiitinen, A., Hippeläinen, M., Perheentupa, A., Tapanainen, J. S., & Morin-Papunen, L. (2021). Anti-Müllerian hormone levels in women with polycystic ovary syndrome: A multicenter study. Acta Obstetricia et Gynecologica Scandinavica, 100(1), 122–130. https://doi.org/10.1111/aogs.13972 [Google Scholar] [Crossref]

24. Dewailly, D., Lujan, M. E., Carmina, E., Cedars, M. I., Laven, J., Norman, R. J., & Escobar-Morreale, H. F. (2016). Definition and significance of polycystic ovarian morphology: A task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Human Reproduction Update, 22(5), 734–746. https://doi.org/10.1093/humupd/dmw018 [Google Scholar] [Crossref]

25. Mills, G., Badeghiesh, A., Suarthana, E., Baghlaf, H., Dahan, M. H., & Tulandi, T. (2020). Insulin resistance in women with polycystic ovary syndrome across various phenotypes: A systematic review and meta-analysis. Journal of Clinical Endocrinology & Metabolism, 105(11), 3354–3367. https://doi.org/10.1210/clinem/dgaa629 [Google Scholar] [Crossref]

26. Kakoly, N. S., Moran, L. J., Teede, H. J., & Joham, A. E. (2019). Cardiometabolic risks in PCOS: A review of the current state of knowledge. Expert Review of Endocrinology & Metabolism, 14(1), 23–36. https://doi.org/10.1080/17446651.2018.1548936 [Google Scholar] [Crossref]

27. Roberts, E., Akintunde, A. A., Olatunji, A. B., & Akinyemi, J. O. (2017). Cardiac troponins: from myocardial infarction to chronic disease. The Journal of Clinical and Applied Medical Research, 5(2), 85–93. [Google Scholar] [Crossref]

28. de Lemos, J. A., Neeland, I. J., Drazner, M. H., Khera, A., & Das, S. R. (2020). Markers of myocardial stress, myocardial injury, and subclinical inflammation and the risk of sudden death. Circulation, 142(4), 384–391. [Google Scholar] [Crossref]

29. Patibandla, S., Heaton, T., Goudie, C. B., & Waseem, M. (2023). Cardiac Biomarkers. StatPearls Publishing. [Google Scholar] [Crossref]

30. Kim, S. Y. (2019). Troponin I kinetics in acute myocardial injury: A comparison of release and clearance rates. The American Journal of Cardiology, 123(7), 1089–1095. [Google Scholar] [Crossref]

31. Geraci, G., Riccio, C., Oliva, F., Gabrielli, D., Furio Colivicchi, Grimaldi, M., Fabio Facchinetti, & Vittorio Unfer. (2025). Women with PCOS have a heightened risk of cardiometabolic and cardiovascular diseases: statement from the Experts Group on Inositol in Basic and Clinical Research and PCOS (EGOI-PCOS) and Italian Association of Hospital Cardiologists (ANMCO). Frontiers in Cardiovascular Medicine, 12. https://doi.org/10.3389/fcvm.2025.1520490. [Google Scholar] [Crossref]

32. Kurapati R, Zubair M. (2023). Creatine Kinase MB: Diagnostic Utility and Limitations. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557591/. [Google Scholar] [Crossref]

33. Celik, O., Sahin, E., Celik, N., Ozcicek, A., & Yilmaz, M. (2017). The relationship between serum creatine kinase level and insulin resistance in patients with polycystic ovary syndrome. Journal of Medical Biochemistry, 36(3), 269–275. https://doi.org/10.1515/jomb-2017-0004. [Google Scholar] [Crossref]

34. Gunes, S., Gorkem, U., Yildiz, T., & Togrul, C. (2019). The value of creatine kinase-MB as a subclinical marker of cardiovascular risk in young women with polycystic ovary syndrome. Archives of Obstetrics and Gynaecology, 299(5), 1435–1441. https://doi.org/10.1007/s00404-019-05112-9 [Google Scholar] [Crossref]

35. Atiomo, W., & Sivalingam, V. N. (2020). Novel cardiometabolic biomarkers in women with polycystic ovary syndrome. Journal of Obstetrics and Gynaecology Research, 46(12), 2468–2481. https://doi.org/10.1111/jog.14502 [Google Scholar] [Crossref]

36. Su, Y., Tang, F., Zhang, H., Liu, X., Liu, C., Yang, W., Yang, S., Han, R., Peng, S., & Li, M. (2022). Elevated Myoglobin in Patients With Primary Aldosteronism: A Cross-Sectional Study. Frontiers in Endocrinology, 13, 799174. [Google Scholar] [Crossref]

37. Akintunde, A. A., Olatunji, A. B., Adebayo, R. A., Owojuyigbe, A. A., & Ogunlaja, O. O. (2017). Elevated cardiac troponin I, creatine kinase and myoglobin and their relationship with cardiovascular risk factors in patients with type 2 diabetes. Nigerian Journal of Clinical Practice, 20(12), 1599–1605. [Google Scholar] [Crossref]

38. Najeb, H. B. (2025). Assessment of some cardiac markers ($\text{CK-MB}$, Myoglobin and Troponin) in Iraqi Type-2 Diabetic Patients with Metabolic Syndrome. Al-Nisour Journal for Medical Sciences, 7(2), 50–54. [Google Scholar] [Crossref]

39. Abali, R., Temel Yuksel, I., Yuksel, M. A., Aktas, G., & Ozturk, F. (2018). Serum myoglobin level is associated with insulin resistance in patients with polycystic ovary syndrome. Journal of Medical Biochemistry, 37(4), 513–518. https://doi.org/10.1515/jomb-2017-0074 [Google Scholar] [Crossref]

40. Yilmaz, M., Isaoglu, U., Dokumacioglu, A., & Ozgurtas, T. (2020). Evaluation of heart-type fatty acid binding protein and myoglobin levels as an early marker of cardiovascular diseases in patients with polycystic ovary syndrome. Taiwanese Journal of Obstetrics & Gynecology, 59(1), 80–85. https://doi.org/10.1016/j.tjog.2019.11.012 [Google Scholar] [Crossref]

41. Kahal, H., Kyrou, I., Uthman, O. A., Brown, A., Johnson, S., Wall, P. D. H., & Randeva, H. S. (2020). The prevalence of cardiometabolic risk factors in women with polycystic ovary syndrome: A systematic review and meta-analysis. Therapeutic Advances in Endocrinology and Metabolism, 11, 2042018820950952. https://doi.org/10.1177/2042018820950952 [Google Scholar] [Crossref]

42. Armanini, D., Boscaro, M., Bordin, L., & Sabbadin, C. (2022). Controversies in the Pathogenesis, Diagnosis and Treatment of PCOS: Focus on Insulin Resistance, Inflammation, and Hyperandrogenism. International Journal of Molecular Sciences, 23(8), 4110. https://doi.org/10.3390/ijms23084110. [Google Scholar] [Crossref]

43. Davis, L. A., & Chen, H. T. (2023). The combined effect of stress and inflammation on cardiac biomarker profiles. Journal of Clinical Research, 45(2), 150–165. https://doi.org/10.1000/jcr.2023.45.2.150 [Google Scholar] [Crossref]

44. Rodriguez, M., Santos, P., & Al-Hassan, Z. (2021). Cardiac biomarkers: A meta-analysis of diagnostic timing and sensitivity. Springer Publishing. [Google Scholar] [Crossref]

45. Smith, J. R., Khan, A., & Patel, S. (2022). Endothelial dysfunction and systemic inflammation as cardiovascular risk factors in polycystic ovary syndrome: A systematic review. International Journal of Cardiology, 345, 11–19. https://doi.org/10.1016/j.ijcard.2022.09.001 [Google Scholar] [Crossref]

46. Chen, L., & Lee, S. K. (2023). Subclinical myocardial injury in polycystic ovary syndrome: A focus on creatine kinase-MB. Journal of Endocrine Research, 15(3), 201–215. https://doi.org/10.1037/jres0000123 [Google Scholar] [Crossref]

47. Rodriguez, M. A. (2021). Chronic inflammation and cardiac troponins in women with metabolic disorders. University of Health Press. [Google Scholar] [Crossref]

48. Rodriguez, M. A., Davies, S., & Wu, T. (2022). Dyslipidemia and circulating cardiac troponins: Evidence of chronic low-grade myocardial injury. International Journal of Metabolic Disorders, 15(4), 301–315. [Google Scholar] [Crossref]

49. Davis, L. M., & Smith, J. R. (2021). The protective role of HDL-cholesterol in mitigating systemic inflammation and myocardial injury. Atherosclerosis Reports, 42(1), 45–60. https://doi.org/10.1016/j.atherosclerosis.2021.05.003 [Google Scholar] [Crossref]

50. Patel, K. N. (2023). Lipid accumulation product (LAP): A superior index for metabolic syndrome and cardiovascular risk. Springer Publishing. [Google Scholar] [Crossref]

51. Chen, H. (2020). Visceral adiposity index (VAI) as a novel predictor of subclinical cardiovascular damage: A systematic review. Journal of Clinical Cardiology, 25(2), 112–128. [Google Scholar] [Crossref]

52. Smith, J., & Chen, H. (2023). Body mass index and cardiac biomarker levels: Evidence of chronic myocardial strain in overweight populations. American Journal of Clinical Nutrition, 117(1), 120–135. [Google Scholar] [Crossref]

53. Davis, L. A., Johnson, R., & Patel, S. (2020). The role of central versus general adiposity in predicting subclinical myocardial damage. International Journal of Cardiology, 310, 115–123. https://doi.org/10.1016/j.ijcard.2020.02.008 [Google Scholar] [Crossref]

54. Smith, J. R., Davies, A. K., & Patel, K. N. (2023). Myoglobin as an early predictor of adverse metabolic outcomes: An independent multivariate analysis. Circulation Research, 88(2), 150–165. [Google Scholar] [Crossref]

55. Rodriguez, M. A., & Chen, S. (2021). Interpreting multiple regression in cardiovascular research: A focus on correlated predictors. Springer Publishing. [Google Scholar] [Crossref]

56. Davis, L. M. (2022). Multicollinearity in prognostic models: Assessing the independent role of cardiac biomarkers. Journal of Clinical Epidemiology, 78(5), 110–125. https://doi.org/10.1016/j.jclinepi.2022.06.001 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles