Comparison of the Morphology and Morphometry of Placenta from Normal and Assisted Reproduction in Port Harcourt, Rivers State, Nigeria.
Authors
Department of Anatomy, Faculty of Basic Medical Science, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Rivers State. (Nigeria)
Department of Anatomy, Faculty of Basic Medical Science, College of Health Sciences, University of Port Harcourt, Choba, Port Harcourt, Rivers State. (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.12110144
Subject Category: Reproductive Biology
Volume/Issue: 12/11 | Page No: 1623-1634
Publication Timeline
Submitted: 2025-11-22
Accepted: 2025-12-28
Published: 2025-12-20
Abstract
The placenta is a fetomaternal organ which connects the developing fetus to the mother. This connection is both structural and functional. This study is aimed at examining the relationship between placental morphology and morphometry in normal and assisted reproduction (ART) in Port Harcourt, Rivers State, Nigeria. A case-controlled descriptive, prospective cross-sectional study was done using placentas from normal and assisted reproduction, with a sample size (n=96. The placenta was obtained immediately after delivery, and the membrane was trimmed off to expose the chorionic plate. Morphologic parameters were recorded, while measurements were taken for morphometric parameters. The means of placental morphometry were determined in normal and assisted reproduction. A statistically significant relationship (p< 0.05) was found to exist between morphometric parameters of the placenta in normal and assisted reproduction. At the confidence level (p< 0.05), all the morphometric parameters of the placenta, except the number of cotyledons and volume of placenta, showed a significant difference in normal and assisted reproduction. There was no statistically significant difference in the morphology of the placenta in normal and assisted reproduction, except for umbilical cord insertion. Assisted reproduction caused a significant effect on the morphometry of the placenta, umbilical cord insertion and feto-placental ratio. Our study showed that assisted reproduction increases the thickness and diameter of the placenta, but causes a reduction in placental weight and feto-placental ratio. ART increased the incidence of central and velamentous insertion but decreased eccentric and marginal insertion of the umbilical cord. Our study provides baseline data on morphometric parameters of the placenta in normal (spontaneous) and assisted production in Port Harcourt, Rivers State, Nigeria. These findings contribute to the global understanding of the dynamics of the effect of hormonal drugs used in ART.
Keywords
Morphology and Morphometry of Placenta, Normal (Spontaneous) Reproduction, Assisted Reproduction (ART).
Downloads
References
1. Ceelen, M., Weissenbruch, M., Vermeden, P. W., Leeuwen, F. E., & Waal, H. A. D. (2008). Growth and development of children born after in vitro fertilisation. In Vitro Fertilization, 90(5), 1662–1673. [Google Scholar] [Crossref]
2. Dong, J., Wen, L., Guo, X., Xiao, X., Jiang, F., Li, B., ... & Wang, X. (2019). The increased expression of glucose transporters in human full-term placentas from assisted reproductive technology without changes of mTOR signaling. Placenta, 86, 4-10. [Google Scholar] [Crossref]
3. Sakka, S. D., Loutradis, D., Kanaka-Gantenbein, C., Margeli, A., Papastamataki, M., Papassotiriou, I., & Chrousos, G. P. (2010). Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertility and sterility, 94(5), 1693-1699. [Google Scholar] [Crossref]
4. Karami, M., Jenabi, E., & Fereidooni, B. (2018). The association of placenta previa and assisted reproductive techniques: a meta-analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 31(14), 1940-1947. [Google Scholar] [Crossref]
5. Qin, J., Liu, X., & Wang, H., Gao, S. (2016). Assisted reproductive technology and risk of pregnancy-related Complications and adverse outcomes in singleton pregnancies: A meta-analysis of cohort studies. Fertility and Sterility, 105, 73–83. [Google Scholar] [Crossref]
6. Xiang, M., Chen, S., Zhang, X., & Ma, Y. (2021). Placental diseases associated with assisted reproductive technology. Reproductive Biology, 21(2), 100505. [Google Scholar] [Crossref]
7. Smith, R. (2022). The placenta as an endocrine organ/placental endocrinology. In F. Petraglia, M. Di Tommaso, & F. Mecacci (Eds.), Hormones and pregnancy: Basic science and clinical implications (pp. 13–19). Cambridge University Press. [Google Scholar] [Crossref]
8. Burton, G. J., Fowden, A. L., & Thornburg, K. L. (2016). Placental origins of chronic disease. Physiological reviews, 96(4), 1509-1565. [Google Scholar] [Crossref]
9. Smith, R., Paul, J. W., & Tolosa, J. M. (2020). Sharpey‐Schafer Lecture 2019: From retroviruses to human birth. Experimental Physiology, 105(4), 555-561. [Google Scholar] [Crossref]
10. Brosens, I., Pijnenborg, R., Vercruysse, L., & Romero, R. (2011). The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. American journal of obstetrics and gynecology, 204(3), 193-201. [Google Scholar] [Crossref]
11. Rathbun, K. M., & Hildebrand, J. P. (2022). Placenta abnormalities. In StatPearls. StatPearls Publishing [Google Scholar] [Crossref]
12. Huang, C. C., Hsueh, Y. W., Chang, C. W., Hsu, H. C., Yang, T. C., Lin, W. C., & Chang, H. M. (2023). Establishment of the fetal-maternal interface: Developmental events in human implantation and placentation. Frontiers in Cell and Developmental Biology, 11, 1200330. [Google Scholar] [Crossref]
13. Prabaharan, E., Armant, D. R., & Drewlo, S. (2025). Human placentation: foundations and implications for reproductive endocrinology and infertility. Systems biology in reproductive medicine, 71(1), 279-306. [Google Scholar] [Crossref]
14. Knofler, M., Haider, S., Saleh, L., Pollheimer, J., Gamage, T. K., & James, J. (2019). Human placenta and trophoblast development: key molecular mechanisms and model systems. Cellular and Molecular Life Sciences, 76(18), 3479-3496. [Google Scholar] [Crossref]
15. Ananthi, V., Rajkumar, D., & Muniappan, V. (2019). Morphometry of Human Placenta in Natural Conception and Assisted Reproduction with its Clinical Significance. Academia Anatomica International, 5(2), 42-45 [Google Scholar] [Crossref]
16. Griffith, O. W., & Wagner, G. P. (2017). The placenta is a model for understanding the origin and evolution of vertebrate organs. Nature ecology & evolution, 1(4), 0072. [Google Scholar] [Crossref]
17. Kalinka, A. T. (2015). How did viviparity originate and evolve? Of conflict, co‐option, and cryptic choice. BioEssays, 37(7), 721-731. [Google Scholar] [Crossref]
18. Furukawa, S., Kuroda, Y., & Sugiyama, A. (2014). A comparison of the histological structure of the placenta in experimental animals. Journal of toxicologic pathology, 27(1), 11-18. [Google Scholar] [Crossref]
19. Benirschke, K., Kaufmann, P., & Baergen, R. N. (2000). Pathology of the human placenta (4th ed.). Springer. [Google Scholar] [Crossref]
20. Charnock-Jones, D. S., Kaufmann, P., & Mayhew, T. M. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta, 25(2-3), 103-113. [Google Scholar] [Crossref]
21. Kaufmann, P., Huppertz, B., & Frank, H.-G. (2014). The placenta: Development, function, and pathology. In R. K. Creasy, R. Resnik, J. D. Iams, C. J. Lockwood, T. R. Moore, & M. F. Greene (Eds.), Creasy and Resnik's maternal-fetal medicine: Principles and practice (7th ed., pp. 55–73). Elsevier Saunders. [Google Scholar] [Crossref]
22. Khong, T. Y. (2004, August). Placental vascular development and neonatal outcome. In Seminars in Neonatology, 9(4), 255-263. WB Saunders. [Google Scholar] [Crossref]
23. Balihallimath, R. L., Shirol, V. S., Gan, A. M., Tyagi, N. K., & Bandankar, M. R. (2013). Placental morphometry determines birth weight and adulthood disease patterns. Journal of Clinical and Diagnostic Research, 7(2), 2428–2431. [Google Scholar] [Crossref]
24. Wubale, Y., & Tolera, A. (2017). Gross morphological study of the placenta in pre-eclampsia mothers. Anatomy Journal of Africa, 6(2), 977–981. [Google Scholar] [Crossref]
25. Huang, X., Mu, X., Deng, L., Fu, A., Pu, E., Tang, T., & Kong, X. (2019). The etiologic origins of chronic obstructive pulmonary disease. International journal of chronic obstructive pulmonary disease, 1139-1158. [Google Scholar] [Crossref]
26. Salmani, D., Purushothaman, S., Somashekara, S. C., Gnanagurudasan, E., Sumangaladevi, K., Harikishan, R., & Venkateshwarareddy, M. (2014). Study of structural changes in placenta in pregnancy-induced hypertension. Journal of natural science, biology, and medicine, 5(2), 352. [Google Scholar] [Crossref]
27. Begum Y, Fatima SA, Fatima SK. (2020). Role of Morphometry of Placenta in Determination of Birth Weight of Fetus in Hypertensive Mothers. Acad. Anat. Int. 2020;6(2):77-80. [Google Scholar] [Crossref]
28. Manna, C., Lacconi, V., Rizzo, G., De Lorenzo, A., & Massimiani, M. (2022). Placental Dysfunction in Assisted Reproductive Pregnancies: Perinatal, Neonatal and Adult Life Outcomes. International Journal of Molecular Sciences, 23(2), 659. [Google Scholar] [Crossref]
29. Burton, G. J., Jauniaux, E., & Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. International Journal of Developmental Biology, 54(2), 303. [Google Scholar] [Crossref]
30. Cochrane, E., Pando, C., Kirschen, G. W., Soucier, D., Fuchs, A., & Garry, D. J. (2020). Assisted reproductive technologies (ART) and placental abnormalities. Journal of Perinatal Medicine, 48(8), 825-828. [Google Scholar] [Crossref]
31. Yampolsky, M., Salafia, C. M., Shlakhter, O., Haas, D., Eucker, B., & Thorp, J. (2009). Centrality of the umbilical cord insertion in a human placenta influences the placental efficiency. Placenta, 30(12), 1058-1064. [Google Scholar] [Crossref]
32. Huppertz, B. (2008). The anatomy of the normal placenta. Journal of Clinical Pathology, 61(12), 1296-1302. [Google Scholar] [Crossref]