Food Packaging Paper from Mixture of Eggshell Powder, Sugarcane Leaves, and Coffee Grounds

Authors

Edelyn G. Lobaton

A Thesis Presented to the Faculty of Graduate Studies College of Industrial Technology Carlos Hilado Memorial State University (Philippines)

Mary Rose S. Tubid

A Thesis Presented to the Faculty of Graduate Studies College of Industrial Technology Carlos Hilado Memorial State University (Philippines)

Myrly V. Cabrera

A Thesis Presented to the Faculty of Graduate Studies College of Industrial Technology Carlos Hilado Memorial State University (Philippines)

Article Information

DOI: 10.51244/IJRSI.2025.1215PH000215

Subject Category: Environment

Volume/Issue: 12/15 | Page No: 2822-2851

Publication Timeline

Submitted: 2025-11-19

Accepted: 2025-11-26

Published: 2025-12-11

Abstract

This study developed a food packaging paper using a composite of agricultural and household waste, consisting of 40–45% eggshell powder, 5–10% coffee grounds, 30–35% processed sugarcane leaf fibers, and 8–10% binder. Three formulations with varying ratios of these components were produced and evaluated for tensile strength, thickness, density, biodegradability, and sensory attributes such as color, texture, and odor. Results confirmed successful sheet formation and demonstrated the paper’s biodegradability, with sensory evaluation indicating high acceptability. However, tensile strength remained below commercial standards, suggesting a need for further optimization. While the process shows potential for scale-up using existing equipment, production costs were found to be higher than those of kraft paper. Overall, the developed paper presents a promising sustainable alternative to conventional packaging but requires improvements to enhance mechanical performance and cost-efficiency.

Keywords

Food Packaging Paper ,Mixture, Eggshell Powder

Downloads

References

1. Adebisi, A. A., Ajayi, F. T., & Adesogan, E. K. (2019). Determination of a suitable sterilization method for soil in isoproturon biodegradation studies. International Journal of Agricultural Research, 14(3), 1-7. [Google Scholar] [Crossref]

2. Ahmad, F., Al-Hemyari, S., Al-Saidi, G., & Al-Balushi, A. (2020). Review of sustainable food packaging materials based on renewable resources. Sustainability, 12(22), 9756. [Google Scholar] [Crossref]

3. Almasi, H., Ghanbarzadeh, B., & Zohuriaan-Mehr, M. J. (2019). Development of food packaging paper from eggshell powder, sugarcane leaves, and spent coffee grounds. Waste Management, 86, 31-40. [Google Scholar] [Crossref]

4. Almasi, H., Sharifahmadian, S., & Oromiehie, A. (2021). Edible packaging films and coatings: A review of formulations, properties, and food applications. Trends in Food Science & Technology, 118, 128544. [Google Scholar] [Crossref]

5. American Society for Testing and Materials (ASTM). (2017). Standard Test Method for Tensile Strength of Paper and Paperboard (Using Constant-Rate-of-Elongation Tensile Testing Machine). ASTM D828-17. West Conshohocken, PA: ASTM International. [Google Scholar] [Crossref]

6. Aranas, J.M. C., et al. (2021). Characterization and evaluation of bio-based packaging materials form renewable resources. Journal of Applied Packaging Research, 18(3), 73-84 [Google Scholar] [Crossref]

7. ASTM D7268 (2022). Standard test method for density and specific gravity (relative density) of solid materials using a pycnometer. American Society for Testing and Materials. [Google Scholar] [Crossref]

8. Bajpai, P. (2015). Advances in pulping and papermaking. Amsterdam: Elsevier. [Google Scholar] [Crossref]

9. Callister, W. D., & Rethwisch, D. G. (2015). Materials science and engineering: An introduction (9th ed.). John Wiley & Sons, Inc. [Google Scholar] [Crossref]

10. Chen, L., Wang, Q., Dai, J., Wang, Y., & Qiu, Z. (2020). Preparation and characterization of sustainable food packaging paper from sugarcane leaves and eggshell powder. Cellulose, 27(1), 577-590. [Google Scholar] [Crossref]

11. Chouchourel, D., Dubé, S., Dufour, L., & Roy, R. (2023). Consumers' sensory and affective responses to sustainable and conventional food packaging. Appetite, 189, 106963. [Google Scholar] [Crossref]

12. https://www.acrwebsite.org/volumes/v47/acr_vol47_2551636.pdf [Google Scholar] [Crossref]

13. Coma, V. (2014). Bio-based packaging materials for the food industry. Springer. [Google Scholar] [Crossref]

14. Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Thousand Oaks, CA: SAGE Publications. [Google Scholar] [Crossref]

15. De Pelsmaeker, L., Aerts, W., & De Steur, H. (2021). Sensory evaluation of paper-based alternatives to plastic food packaging. Journal of Sensory Studies, 36(4), e12621. [Google Scholar] [Crossref]

16. https://www.researchgate.net/topic/Sensory-Evaluation~Food-Packaging/publications [Google Scholar] [Crossref]

17. Del Giudice, M., Giustiniani, A., & Lombardi, M. (2015). Sensory attributes of paperboard packaging for beverages. Packaging Technology & Science, 28(8), 409-420. [Google Scholar] [Crossref]

18. https://www.researchgate.net/publication/263208807_Sensory_attributes_of_soft_drinks_and_their_influence_on_consumers'_preferences [Google Scholar] [Crossref]

19. Deliya, M. M., & Parmar, B. J. (2012). Role of packaging on food quality. Journal of Food Science and Technology, 2(2), 10-15. [Google Scholar] [Crossref]

20. Del Rosario, E.M. (2018). Sustainable packaging alternatives for food products in the Philippines. Journal of Sustainable Agriculture and Environmental Management, 1(1), 1-10 [Google Scholar] [Crossref]

21. Dennis, A., Wixom, B. H., & Roth, R. M. (2015). Systems analysis and design (6th ed.). Wiley. [Google Scholar] [Crossref]

22. Dusseault, C., & Lacroix, M. (2017). Edible films and coatings: A review of recent advances and applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 99-128. [Google Scholar] [Crossref]

23. Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003 [Google Scholar] [Crossref]

24. Garcia, M., Ribes, S., Ferrándiz, M., & Fito, P. (2018). Biobased packaging materials from agricultural waste. Trends in Food Science & Technology, 79, 1-10. [Google Scholar] [Crossref]

25. Gómez-Díaz, J. A., López-Hernández, F. J., & Montero, P. (2014). Sensory evaluation of recycled paperboard for food packaging: Influence of essential oil treatments on aroma and overall acceptability. Food Packaging and Shelf Life, 3(2), 119-127. doi: 10.1016/j.fpsl.2013.11.003 [Google Scholar] [Crossref]

26. González-Gómez, D., Cháfer, M., Domínguez, C., & Cantero, D. (2022). A review on sustainable food packaging based on biopolymers and nanomaterials. Polymers, 14(12), 2659. [Google Scholar] [Crossref]

27. Grant, C., & Osanloo, A. (2014). Understanding, selecting, and integrating a theoretical framework in dissertation research: Creating the blueprint for your "house". Administrative Issues Journal, 4(2), 12-26. [Google Scholar] [Crossref]

28. Griggs, D., Stafford-Smith, O., Gaffney, O., & Brousse, M. (2013). Sustainable development: Guiding principles for the future. Nature, 498(7454), 355-361. [Google Scholar] [Crossref]

29. Han J, Krochta JM. (2014) Edible films from whey protein: a review. Food Science & Technology International. 2005;11(1):1-22. [Google Scholar] [Crossref]

30. Han JH, Kwak HS, Kim HY (2005). Development of edible corn starch-based films incorporated with beeswax and propylene glycol. Food Hydrocolloids. 2014;38:16-22. [Google Scholar] [Crossref]

31. Han, J. H., & Krochta, J. M. (2007). Edible coatings to improve food quality. Trends in Food Science & Technology, 18(12), 604-610. [Google Scholar] [Crossref]

32. Huber, T., & Biesalski, M. (2020). Sustainable food packaging: A review of materials, characteristics, and processes. Foods, 9(3), 317. [Google Scholar] [Crossref]

33. International Organization for Standardization (ISO). (2006). ISO 14855:2006 Soil quality - Evaluation of the aerobic and anaerobic biodegradability of plastic materials in the soil - Method by analysis of evolved carbon dioxide. Geneva, Switzerland: ISO. [Google Scholar] [Crossref]

34. ISO 534 (2022). Paper and board — Determination of thickness and grammage. International Organization for Standardization. [Google Scholar] [Crossref]

35. Kellogg JH. Process of making edible food packages. US Patent No. 824,767. 1906 Jul 17. [Google Scholar] [Crossref]

36. Kirwan, M. J. (2011). Plant economics: Principles and applications. Butterworth-Heinemann. [Google Scholar] [Crossref]

37. Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices (2nd ed.). Springer Science & Business Media. [Google Scholar] [Crossref]

38. Li Y, Chen H, Wang Z, et al. Development of edible films based on sodium alginate and beeswax. Food Hydrocolloids. 2017;73:258-265. [Google Scholar] [Crossref]

39. Liang J, Wang L, Jiang M, et al. Preparation and characterization of edible films based on peanut protein isolate and chitosan. International Journal of Biological Macromolecules. 2018;114:120-131. [Google Scholar] [Crossref]

40. Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382-386. PMID: 3780665 [Google Scholar] [Crossref]

41. Maleque, M. A., Belal, F. Y., & Sapuan, S. M. (2007). Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite. The Arabian Journal for Science and Engineering, 32(2B), 359-364. [Google Scholar] [Crossref]

42. Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), R39-R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x [Google Scholar] [Crossref]

43. Martínez-Bueno, M. J., Gómez-Galán, M., Gómez-Carrasco, C., & Ferre-Aracil, C. (2019). Understanding the odor issues in food packaging development. Trends in Food Science & Technology, 87, 150-160. https://doi.org/10.1016/j.tifs.2018.09.006 [Google Scholar] [Crossref]

44. Mendoza, M. R. V., et al. (2017). Development of eco-friendly packaging using agricultural waste. International Journal of Recycling and Waste Disposal, 3(3), 35-41. [Google Scholar] [Crossref]

45. Mercado, R. (1994). Theoretical and conceptual framework. Unpublished material. University of the Philippines Los Baños, Laguna. [Google Scholar] [Crossref]

46. Miao, M., et al. (2022). Development and characterization of food packaging paper using eggshell waste, sugarcane leaves, and spent coffee grounds. Food Packaging and Shelf Life, 34, 100894. [Google Scholar] [Crossref]

47. Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: An interdisciplinary exploration of the concept and application in a global context. Journal of Business Ethics, 140(3), 369-380. [Google Scholar] [Crossref]

48. Nassaji, H. (2015). Qualitative and descriptive research: Data type versus data analysis. Language Teaching Research, 19(2), 129-132. https://doi.org/10.1177/1362168815572747 [Google Scholar] [Crossref]

49. Nilsen-Nygaard, J., Brask, J., Fernández, E. N., & Toldrá, F. (2019). Edible films and coatings for improved food quality. Food Chemistry, 272, 590-600. [Google Scholar] [Crossref]

50. Organization for Economic Co-operation and Development. (2012). Aerobic and anaerobic biodegradation of solid organic compounds in soil (Test No. 209). [Google Scholar] [Crossref]

51. Otoni, C. G., Silva, G. G., Gomes, F. J., Miranda, M. L., Soares, B. M., & Leitão, R. C. (2019). Mechanical pulping and papermaking from sugarcane straw: Optimization of process conditions and evaluation of paper properties. Industrial Crops and Products, 130, 87-96. [Google Scholar] [Crossref]

52. Otoni, C. G., Soares, D. S., Milioli, C. C., Rosa, M. F., & Grossmann, M. V. (2019). Sustainable food packaging: Materials and properties. Food Research International, 124, 471-489. [Google Scholar] [Crossref]

53. Padua, G. W. (2014). Edible films and coatings for food applications. Springer. [Google Scholar] [Crossref]

54. Philippine Patent Office. (2022). Patent No. PH 1 2022 000001. Eco-friendly food packaging paper made from sugarcane bagasse. [Google Scholar] [Crossref]

55. Philippine Patent Office. (2023). Patent No. PH 1 2023 000002. Food packaging paper made from banana peel fibers. [Google Scholar] [Crossref]

56. Philippine Statistics Authority (PSA). (2022). 2022 Philippine Standard Industrial Classification (PSIC). Manila, Philippines: Philippine Statistics Authority. [Google Scholar] [Crossref]

57. Pizzi, A. (2015). Recycling of paper and board. Weinheim, Germany: Wiley-VCH. [Google Scholar] [Crossref]

58. Qi J, Chen J, Chen H, et al. Development of edible films based on konjac glucomannan and Spirulina platensis protein. Food Hydrocolloids. 2018;84:501-509. [Google Scholar] [Crossref]

59. Ravitch, S. M., & Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research. Sage Publications. [Google Scholar] [Crossref]

60. Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404-419. https://doi.org/10.1016/j.meatsci.2014.06.031 [Google Scholar] [Crossref]

61. Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1), 22-27. https://doi.org/10.1016/j.tibtech.2004.11.002 [Google Scholar] [Crossref]

62. Sachs, J. D., Reid, W. V., Scheffer, M., Grosser, G., & Kroll, G. (2010). Greening the economy: A new era of economic growth. Nature, 466(7308), 828-833. [Google Scholar] [Crossref]

63. Santos, S. A. O., Silva, J. L., Souza, F. S., Oliveira, L. C. A., Teixeira, S., & Soares, N. F. F. (2022). Sustainable food packaging paper from sugarcane leaves, eggshell powder, and spent coffee grounds: A comparative study. Food Packaging and Shelf Life, 33, 100897. [Google Scholar] [Crossref]

64. Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 19(12), 634-643. [Google Scholar] [Crossref]

65. Siracusa, V., Rocchetti, G., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 19(12), 634-646. [Google Scholar] [Crossref]

66. Valacich, J. S., George, J. F., & Hoffer, J. A. (2020). Essentials of systems analysis and design (7th ed.). Pearson. [Google Scholar] [Crossref]

67. Van Wezel, N., Hesselink, W. H., & De Vries, J. (2022). Choice architecture in eco-friendly food packaging: Combining environmental and product cues. Journal of Business Research, 148, 553-566. https://journals.sagepub.com/doi/full/10.1177/07439156211008898 [Google Scholar] [Crossref]

68. Villareal, M. A. A., Reyes, L. P., & Garcia, M. A. C. (2022). Development of Sustainable Paper from Eggshell Powder and Sugarcane Leaves. The Philippine Agricultural Scientist, 105(4), 471-484. [Google Scholar] [Crossref]

69. Wang L, Jiang M, Wang Z, et al. Preparation and characterization of edible cellulose films reinforced with microcrystalline cellulose whiskers. International Journal of Biological Macromolecules. 2018;114:132-138. [Google Scholar] [Crossref]

70. Witherow, J. L., et al. (2019). Physical properties of paper packaging materials. Journal of Packaging Technology and Science, 32(1), 1-11. [Google Scholar] [Crossref]

71. Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). Thousand Oaks, CA: SAGE Publications. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles