Planting Sustainability Prediction Using Random Forest Algorithm

Authors

Harold R. Lucero

College of Computer Studies, Quezon City University (Philippines)

Luisito DC. Soriano

College of Computer Studies, Quezon City University (Philippines)

Jayson D. Dela Cruz

College of Computer Studies, Quezon City University (Philippines)

Rodel I. Magniyo

Responsive System Division, Office of the President (Philippines)

John Marvic G. Hernaez

Corporate Planning-Data and Analytics, Century Pacific Food Inc (Philippines)

Article Information

DOI: 10.51244/IJRSI.2025.1210000089

Subject Category: Agriculture

Volume/Issue: 12/10 | Page No: 993-1007

Publication Timeline

Submitted: 2025-10-20

Accepted: 2025-10-26

Published: 2025-11-05

Abstract

This study aimed to utilize smart space technologies in determining planting sustainability and soil moisture stress that will optimize IoT and data mining technique to help in achieving the government’s goal of empowering and strengthening the nation’s agricultural sector. The study employed the combined experimental, developmental, and quantitative research approach towards achieving the objectives of the study. In order to gather abiotic and edaphic data, including soil moisture, light, temperature, humidity, pH, and NPK level, the study constructed an IoT prototype. The researcher employed LoRa technology in transmitting collected data into the IoT gateway before uploading it to Firebase Realtime Database. The study also involved the development of a mobile application using Blynk IoT Framework and web interface for remote monitoring and control of irrigation and UV lighting system. Comparative analysis was conducted between Random Forest, KNN, and Naïve Bayes Algorithm in predicting planting sustainability based on available data. Based on the calculated Kappa of 0.9901, Random Forest demonstrated the highest level of accuracy with a "Almost Perfect" strength of agreement. Random forest was implemented using the RubixML library to enable the web interface to perform predictions of Planting Sustainability on data stored in the database. In the user evaluation test based on ISO25010 conducted by the researcher, the overall weighted mean for all criteria is 4.19, with an "Agree (A)" interpretation. This indicates that the developed system is of excellent quality, excelling in functionality, dependability, usability, efficiency, maintainability, and portability.

Keywords

IoT, Data Mining, Agriculture, Vertical Farming

Downloads

References

1. G. J. Perez, M. Macapagal, R. Olivares, E. M. Macapagal, and J. C. Comiso, “Forecasting and monitoring agricultural drought in the Philippines,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 41, no. July, pp. 1263–1269, 2016, doi: 10.5194/isprsarchives-XLI-B8-1263-2016. [Google Scholar] [Crossref]

2. S. Farming, “Smart Farming,” no. 113, pp. 1–17, 2018, doi: 10.3390/s18114051. [Google Scholar] [Crossref]

3. M. Chetan Dwarkani, R. Ganesh Ram, S. Jagannathan, and R. Priyatharshini, “Smart farming system using sensors for agricultural task automation,” Proc. - 2015 IEEE Int. Conf. Technol. Innov. ICT Agric. Rural Dev. TIAR 2015, no. Tiar, pp. 49–53, 2015, doi: 10.1109/TIAR.2015.7358530. [Google Scholar] [Crossref]

4. E. O. Brown, R. V Ebora, and F. L. C. Decena, “The Current State , Challenges and Plans for Philippine Agriculture 1 Philippine Council for Agriculture , Aquatic and Natural Resources Research This paper provided brief discussion of the current state of Philippine agriculture , the challenges being fa,” vol. 2017, no. Table 1, pp. 1–16. [Google Scholar] [Crossref]

5. C. F. Habito and R. M. Briones, “Philippine agriculture over the years: performance, policies and pitfalls,” Agriculture, p. 38, 2005. [Google Scholar] [Crossref]

6. N. Kaewmard and S. Saiyod, “Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm,” ICWiSe 2014 - 2014 IEEE Conf. Wirel. Sensors, pp. 106–112, 2014, doi: 10.1109/ICWISE.2014.7042670. [Google Scholar] [Crossref]

7. Louise Maureen Simeon, “Philippines secures $2.43 million funding to build smart greenhouses | Philstar.com,” The Philippine Star, 2018. https://www.philstar.com/business/agriculture/2018/ 07/ 08/ 1831455/philippines-secures-243-million-funding-build-smart-greenhouses (accessed May 25, 2019). [Google Scholar] [Crossref]

8. H. Bach and W. Mauser, “Sustainable Agriculture and Smart Farming,” Earth Obs. Open Sci. Innov., pp. 261–269, 2018, doi: 10.1007/978-3-319-65633-5_12. [Google Scholar] [Crossref]

9. A. . Fallis, Managing water and fertilizer for sustainable agricultural intensification, vol. 53, no. 9. 2013. [Google Scholar] [Crossref]

10. C. Yoon, M. Huh, S. G. Kang, J. Park, and C. Lee, “Implement smart farm with IoT technology,” Int. Conf. Adv. Commun. Technol. ICACT, vol. 2018-Febru, pp. 749–752, 2018, doi: 10.23919/ICACT.2018.8323908. [Google Scholar] [Crossref]

11. J. Pitakphongmetha, N. Boonnam, S. Wongkoon, and T. Horanont, “Internet of Things for Planting in Smart Farm Hydroponics Style,” 2016. [Google Scholar] [Crossref]

12. S. Choi et al., “Design and implementation of a connected farm for smart farming system FIESTA-IoT View project Design and Implementation of a Connected Farm for Smart Farming System,” pp. 1–4, 2015, doi: 10.1109/ICSENS.2015.7370624. [Google Scholar] [Crossref]

13. H. McNairn, A. Merzouki, A. Pacheco, and J. Fitzmaurice, “Monitoring soil moisture to support risk reduction for the agriculture sector using RADARSAT-2,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 5, no. 3, pp. 824–834, 2012, doi: 10.1109/JSTARS.2012.2192416. [Google Scholar] [Crossref]

14. Y. O. Sayad, H. Mousannif, and M. Le Page, “Crop management using Big Data,” Proc. 2015 Int. Conf. Cloud Comput. Technol. Appl. CloudTech 2015, 2015, doi: 10.1109/CloudTech.2015.7337003. [Google Scholar] [Crossref]

15. R. O. Slayter, “The influence of progressive increases in total soil moisture stress on transpiration, growth, and internal water relationships of plants,” Aust. J. Biol. Sci., vol. 10, no. Meyer 1945, pp. 320–336, 1957. [Google Scholar] [Crossref]

16. M. K. M. Nasution, M. Elveny, and R. Syah, “Research methodology for computer science,” AIP Conf. Proc., vol. 2714, pp. 1–4, 2023, doi: 10.1063/5.0134511. [Google Scholar] [Crossref]

17. S. Dutta, A. Mitra, S. Chatterjee, S. Lodh, and S. Mukherjee, “A sensor-based approach to monitor a specific plant sustainable environment with additional automated rehydration module,” 2017 4th Int. Conf. Opto-Electronics Appl. Opt. Optronix 2017, vol. 2018-Janua, pp. 1–5, 2018, doi: 10.1109/OPTRONIX.2017.8349986. [Google Scholar] [Crossref]

18. P. R. Harshani, T. Umamaheswari, R. Tharani, S. Rajalakshmi, and J. Dharani, “Effective Crop Productivity and Nutrient Level Monitoring in Agriculture Soil Using IOT,” ICSNS 2018 - Proc. IEEE Int. Conf. Soft-Computing Netw. Secur., no. Cl, pp. 1–10, 2018, doi: 10.1109/ICSNS.2018.8573674. [Google Scholar] [Crossref]

19. G. Kaur, P. Upadhyaya, and P. Chawla, “Comparative analysis of IoT-based controlled environment and uncontrolled environment plant growth monitoring system for hydroponic indoor vertical farm,” Environ. Res., vol. 222, no. February, p. 115313, 2023, doi: 10.1016/j.envres.2023.115313. [Google Scholar] [Crossref]

20. S. Bhardwaj, T. Ozcelebi, J. J. Lukkien, and K. M. Lee, “Smart space concepts, properties and architectures,” IEEE Access, vol. 6, no. c, pp. 70088–70112, 2018, doi: 10.1109/ACCESS.2018.2880794. [Google Scholar] [Crossref]

21. P. Dias, J. Rodrigues, A. Aguiar, and G. David, “Planning and managing data for Smart Cities: An application profile for the UrbanSense project,” 2018 IEEE Int. Smart Cities Conf. ISC2 2018, 2019, doi: 10.1109/ISC2.2018.8656835. [Google Scholar] [Crossref]

22. A. Vasilev, E. Krylov, A. Subbotkin, and I. Paramonov, “Event recording system for smart space applications,” Conf. Open Innov. Assoc. Fruct, vol. 2012-Novem, pp. 147–153, 2017, doi: 10.23919/FRUCT.2012.8122099. [Google Scholar] [Crossref]

23. S. Chae, Y. Yang, J. Byun, and T. Han, “Personal Smart Space : IoT based User recognition and Device control,” pp. 5–6, 2016, doi: 10.1109/ICSC.2016.45. [Google Scholar] [Crossref]

24. P. Mtshali and F. Khubisa, “A smart home appliance control system for physically disabled people,” 2019 Conf. Inf. Commun. Technol. Soc. ICTAS 2019, pp. 1–5, 2019, doi: 10.1109/ICTAS.2019.8703637. [Google Scholar] [Crossref]

25. T. Wiangtong, “IoT-based Versatile Platform for Precision Farming,” 2018 18th Int. Symp. Commun. Inf. Technol., no. Iscit 2018, pp. 438–441, 2020. [Google Scholar] [Crossref]

26. “Prototype Model in Software Engineering.” https://www.guru99.com/software-engineering-prototyping-model.html (accessed Sep. 25, 2023). [Google Scholar] [Crossref]

27. Q. Requirements, “INTERNATIONAL STANDARD ISO / IEC,” vol. 2011, 2011. [Google Scholar] [Crossref]

28. M. Paul, S. K. Vishwakarma, and A. Verma, “Analysis of Soil Behaviour and Prediction of Crop Yield Using Data Mining Approach,” Proc. - 2015 Int. Conf. Comput. Intell. Commun. Networks, CICN 2015, pp. 766–771, 2016, doi: 10.1109/CICN.2015.156. [Google Scholar] [Crossref]

29. “District 5 - Quezon City Great, Green, Growing.” http://quezoncity.weebly.com/district-5.html (accessed Sep. 01, 2023). [Google Scholar] [Crossref]

30. S. Bittrich, M. Kaden, C. Leberecht, F. Kaiser, T. Villmann, and D. Labudde, “Application of an interpretable classification model on Early Folding Residues during protein folding 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing,” BioData Min., vol. 12, no. 1, pp. 1–17, 2019, doi: 10.1186/s13040-018-0188-2. [Google Scholar] [Crossref]

31. J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical Data Published by : International Biometric Society Stable URL : http://www.jstor.org/stable/2529310,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles