Predictive Modeling of Malaria Cases in Beitbridge, Zimbabwe Using SARIMA

Authors

Lynn Nyarai Mutukura

Chinhoyi University of Technology (Zimbabwe)

Tavengwa Masamha

Chinhoyi University of Technology (Zimbabwe)

Article Information

DOI: 10.51244/IJRSI.2025.1215PH000217

Subject Category: Public Health

Volume/Issue: 12/15 | Page No: 2858-2866

Publication Timeline

Submitted: 2025-11-18

Accepted: 2025-11-24

Published: 2025-12-12

Abstract

This study applies Seasonal Autoregressive Integrated Moving Average (SARIMA) models to predict malaria incidence in Beitbridge district, Zimbabwe. Using monthly malaria case data from 2015-2022, we developed, evaluated, and validated time series models to forecast malaria trends. The optimal SARIMA(2,1,1)(1,1,1)₁₂ model was identified through comprehensive diagnostic testing. Model validation showed strong predictive performance with a Mean Absolute Percentage Error (MAPE) of 12.7% and Root Mean Square Error (RMSE) of 18.6. Six-month forecasts revealed expected seasonal peaks in April-May with declining trends. These findings demonstrate SARIMA modeling's utility for malaria surveillance and can inform targeted intervention timing in resource-limited settings. This research provides evidence-based tools for enhancing malaria control strategies in Beitbridge and similar endemic regions.

Keywords

Malaria, SARIMA, Time Series Analysis

Downloads

References

1. Anwar, M. Y., Lewnard, J. A., Parikh, S., & Pitzer, V. E. (2021). Time series analysis of malaria in Bangladesh: Exploring the effects of climatic factors and population movement. Malaria Journal, 20(1), 175. [Google Scholar] [Crossref]

2. Ferrão, J. L., Mendes, J. M., Painho, M., & João, S. Z. (2017). Spatio-temporal variation and socio- demographic characters of malaria in Chimoio municipality, Mozambique. Malaria Journal, 16(1), 423. [Google Scholar] [Crossref]

3. Gwitira, I., Murwira, A., Mberikunashe, J., & Masocha, M. (2018). Spatial and spatio-temporal analysis of malaria cases in Zimbabwe. Infectious Diseases of Poverty, 7(1), 91. [Google Scholar] [Crossref]

4. Mabaso, M. L., Ngwenya, N. P., Mberikunashe, J., Gwitira, I., Saili, K., & Mudzengi, D. (2021). Malaria trends and correlates of malaria testing, treatment, and insecticide-treated nets utilization in Zimbabwe: Analysis of successive demographic and health surveys. Malaria Journal, 20(1), 356. [Google Scholar] [Crossref]

5. Tesfahunegn, A., Berhe, G., & Gebregziabher, E. (2020). Seasonal autoregressive integrated moving average (SARIMA) model for predicting monthly malaria cases in Adi-Yakeni hospital, Tigray, Ethiopia. International Journal of Infectious Diseases, 101, 242-251. [Google Scholar] [Crossref]

6. Wangdi, K., Singhasivanon, P., Silawan, T., Lawpoolsri, S., White, N. J., & Kaewkungwal, J. (2020). Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan. Malaria Journal, 19(1), 60. [Google Scholar] [Crossref]

7. World Health Organization. (2023). World Malaria Report 2022. Geneva: WHO. [Google Scholar] [Crossref]

8. Zimbabwe Meteorological Services Department. (2021). Climate Data Report for Matabeleland South Province 2015-2021. [Google Scholar] [Crossref]

9. Zimbabwe Ministry of Health and Child Care. (2022). Annual Malaria Control Program Report 2021-2022. Harare: Government of Zimbabwe. [Google Scholar] [Crossref]

10. Zimbabwe National Malaria Control Program. (2022). Malaria Strategic Plan 2021-2025. Harare: Ministry of Health and Child Care. [Google Scholar] [Crossref]

11. Zimbabwe National Statistics Agency. (2022). Population Projections Thematic Report. Harare: ZIMSTAT. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles