Preliminary Phytochemical Screening, Antioxidant and Antimicrobial Activities of Crude Leaf Extracts of Pteleopsis Habeensis Aubrev. Ex. Keay (Combretaceae)
Authors
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri. (Nigeria)
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri. (Nigeria)
Department of pharmacology and toxicology, University of Maiduguri, Maiduguri. (Nigeria)
Department of pharmacology and toxicology, University of Maiduguri, Maiduguri. (Nigeria)
Department of pharmacology and toxicology, University of Maiduguri, Maiduguri. (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.1210000141
Subject Category: pharmaceutical chemistry
Volume/Issue: 12/10 | Page No: 1609-1628
Publication Timeline
Submitted: 2025-10-07
Accepted: 2025-10-14
Published: 2025-11-09
Abstract
Pteleopsis habeensis (Aubrev ex Keay), which belongs to the family Combretaceae, is known as Lalen giwa in Hausa language in northern part of Nigeria of Sub Saharan Africa. The area of distribution of Pteleopsis habeensis is restricted to only a few regions: the Bandiagara escarpments in Mali (with the plant population possibly extending into Burkina Faso), the Akosombo and Bui regions in Ghana, and the Yankari Game Reserve and it immediate surroundings in Nigeria. The shrub is use for the treatment of malaria fever, stomach ache, Aphrodisiac and in the destruction of tumours. The leaves of Pteleopsis habeensis were collected from faculty of pharmacy medicinal plant garden University of Maiduguri Borno, Nigeria, in March 2020. The plant was authenticated at the department of biological sciences, University of Maiduguri Borno, Nigeria. Phytochemical screening of crude leaf extract of Pteleopsis habeensis revealed the presence of alkaloids, flavonoids, tannins, triterpinoids, steroids and cardiac glycosides. The crude leaf Methanol and n-Butanol extracts of Pteleopsis habeensis exhibited antimicrobial activities against Escherichia coli, Pseudomonas aeroginosa, Staphylococcus aureus, Streptococcus spp and the fungus Candida albican using disc diffusion method and broth dilution methods. The fungus Candida albican, showed the highest sensitivity to methanol extract with zone of inhibition 14 mm at 100mg/ml compared to it sensitivity to n-Butanol extract with zone of inhibition 10mm at 100mg/ml. The Minimum Inhibitory concentration is 12.5mg/ml for Methanol extract and 25mg/ml for n-Butanol extract. The evaluation of the antioxidant activity of the n-Butanol and Methanol crude extracts was carried out in vitro through the radical model DPPH, and the antioxidant capacity of the two extracts was measured based on their Percentage scavenging activity and IC50 concentration which corresponds to the concentration of the extracts capable of reducing the initial DPPH absorbance by 50%. The DPPH Assay showed high free radical scavenging activity of the extract that is comparable to Ascorbic acid. The percentage scarvenging activity of Methanol extract was higher than that of the n-Butanol extract in the DPPH assay. This study has therefore showed that Pteleopsis habeensis crude leaf extracts contains phytochemicals, has antioxidant and antimicrobial activity, hence a potential source of a candidate drug whose bioactive constituents can be isolated for pharmaceutical use.
Keywords
Pteleopsis habeensis, Phytochemicals, Antimicrobial activity, Antioxidant activity, DPPH assay, Candida albican
Downloads
References
1. Abdullahi M, Muhammad G and Abdulkadir N. U. (2003) Medicinal and economic plant of Nupeland, Jube Evans Books and publication, Bida, 1st Edition, 71. [Google Scholar] [Crossref]
2. Adamu H. M., Ushie O. A., Gwangwala A. H. (2013). Estimation of Total Flavonoids and Tannins in the Stem Bark and Leaves of Anogeisus leiocarpus Plant. International Journal ofTraditional and Natural Medicines, 2(3): 141-148. [Google Scholar] [Crossref]
3. Ahmad I. M., Wudil A. M. (2013). Phytochemical screening and toxicological studies of aqueous stem bark extract of A. leiocarpus in rats. Asian Journal of Scientific Research, 6(4): 781-788. [Google Scholar] [Crossref]
4. Akanbi O. M., Omonkhua A. A., Cyril-Olutayo C. M., Fasimoye R. Y. (2012). The antiplasmodial activity of Anogeissus leiocarpus and its effect on oxidative stress and lipid profile in mice infected with Plasmodium bergheii. Parasitology Research, 110(1): 219 226. [Google Scholar] [Crossref]
5. Akhileshwar Kumar Srivastava (2018). Significance of Medicinal plants in human life, Synthesis of Medicinal agent from plants. Elsevier Ltd. Chapter, Pg. 1-24 [Google Scholar] [Crossref]
6. Aliyu M. F, Bababe A, Kachallah M, Yesufu H. B, Goje A. F and Gwa A. E. (2017) Phytochemical screening, TLC profile and antioxidant activities of crude Methanol extract of Pteleopsis habeensis (Aubrev ex keay) Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 5(4), 150-155. [Google Scholar] [Crossref]
7. Aliyu M. Falmata, Fave Tata, Fatima H. Ashemi (2018. Preliminary Toxicity and Thin layer Chromatographic Studies of Pteleopsis habeensis leaves. Journal of Applied and Advanced Research. 2018: 3(1) 18-21. [Google Scholar] [Crossref]
8. Allison, D.B., Fontaine, K.R., Heshka, S., Mentore, J.L. & Heymsfield, S.B. (2001). Alternative treatments for weight loss: A critical review. Crit. Rev. Food Sci. Nutr., 41, 1–28 [Google Scholar] [Crossref]
9. Anjoo Kamboj, Harpreet Randhawa. Pharmacological Action and SAR of Thiophene Derivatives A Review. Journal of Pharmacy Research. 2012, 5(5), 2676-82. [Google Scholar] [Crossref]
10. Arun B. jyothi, K. Venkatesh, P. Chakrapani, and R. R. Anupalli (2011). “Phytochemical and pharmacological potential of annona cherimola-a review,” International Journal of Phytomedicine, vol. 3, no. 4, p. 439, 2011. [Google Scholar] [Crossref]
11. Baba-Moussa F, Akpagana K and P. Bouchet. (1999). Antifungal activities of seven West African Combretaceae used in traditional medicine, Journal of Ethnopharmacology, 66(3), 335-338. [Google Scholar] [Crossref]
12. Balouiri M., Sadiki M., Ibnsouda S. K., Methods for invitro evaluating antimicrobial activity. A review. J Pharm Anal. 2016; 6:71–9. [Google Scholar] [Crossref]
13. Balunas, M. J. and Kinghorn, D.A. (2005). Drug discovery from medicinal plants. Review article. Life Sci. 78 (5):431-441. [Google Scholar] [Crossref]
14. Barku Y. A. V., Boye A., Ayaba S. (2013). Phytochemical screening and assessment of wound healing activity of the leaves of Anogeissus leiocarpus. Pelagia Research Library European Journal of Experimental Biology, 3(4): 18-25. [Google Scholar] [Crossref]
15. Bimakr, M (2010) Comparison different extraction method for the extraction of major bioactive flavonoid compounds from Spearmint (Mentha Spicata L.) leaves. Food Bioprod Process; 1-6. [Google Scholar] [Crossref]
16. Breslin, Andrew (2017). "The Chemical Composition of Green Plants". Sciencing, Leaf Group Ltd. [Google Scholar] [Crossref]
17. Brink M. and Achigan Dako E. G. (2021). Fibres. Plant resources of Tropical Africa 16, PROCTA foundation/CTA, Wageningen, Netherlands. Pg 384. [Google Scholar] [Crossref]
18. Burkill H. M. (1985). The useful plants of West tropical Africa. 2nd edition. Royal Botanic Gardens, Kew, UK. Vol. 1. [Google Scholar] [Crossref]
19. Cowan M. M. (1999). Plant products as antimicrobial agents, Clin Microbiol Rev, 12(4), 564–82. [Google Scholar] [Crossref]
20. Davies K. J. (1995) Biochem. Soc.Symp. 61. 1-31. [Google Scholar] [Crossref]
21. Devasagayam T. P. A, Tilak J. C, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi, and R. D. Lele, (2004). “Free radicals and antioxidants in human health: current status and future prospects,” JAPI, vol. 52, article 794804, 4 pages. [Google Scholar] [Crossref]
22. Evans W.C. (2002). Trease and Evans Pharmacognosy, 15th Ed., W.B. Sanders, London, pp.183- 184 and 191-393. [Google Scholar] [Crossref]
23. Gere Jephris (2012). Combretaceae: Phylogeny, Biogeography and DNA Barcoding. University of Johannesburg. pg v-vi. [Google Scholar] [Crossref]
24. Ghani, A., (1986). Medicinal plants and traditional medicinal position: Problems and prospects. J. Pharmacogn. Drug. Res., 4: 78-78. [Google Scholar] [Crossref]
25. Guerrini A., Sacchetti G., Rossi D., et al., (2009). “Bioactivities of Piper aduncum L. and Piper obliquum ruiz & pavon (piperaceae) essential oils from Eastern Ecuador,” Environmental Toxicology and Pharmacology, vol. 27, no. 1, pp. 39–48. [Google Scholar] [Crossref]
26. Harborne J. B., (1973). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, Chapman and Hall, London, UK. [Google Scholar] [Crossref]
27. Harborne, Jeffrey B.; Baxter, Herbert; Moss, Gerard P., eds. (1999). "General Introduction". [Google Scholar] [Crossref]
28. Hawthorne, W., (1998). Pteleopsis habeensis. In: IUCN. 2010 Red list of threatened species. Version 2010.1.http://www.iucnredlist.org. Accessed 2nd June, 2013. [Google Scholar] [Crossref]
29. Hudson B.J.F. (2012). Food antioxidants, Elsevier Applied Science, London, pg 99. [Google Scholar] [Crossref]
30. Ibrahim M. B., Owonubi, Onaolapo J. A. (1997). Antibacterial effect of theextracts of leaf, stem and root bark of Anogeissus leiocarpus on S.aureus NCTC 6571, S. pyogenes NCTC, 8198, E. coli NCTC 10418 and P. vulgaris NCTC 4638. J. Pharm. Res. Dev. 2(1): 20-26. [Google Scholar] [Crossref]
31. Ikram Mohamed E. E., Abdel Khalig, M., Hiba, A. A., Saad M. A. (2015). A Comparative Study of Antimicrobial Activity of the Extracts from Root, Leaf and Stem of Anogeissus Leiocarpus Growing In Sudan. Journal of Pharmacognosy and Phytochemistry, p.107. [Google Scholar] [Crossref]
32. Jorgensen J. H., Turnidge J. D., Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A. (2007). Antibacterial susceptibility tests: dilution and disk diffusion methods, Manual of clinical microbiolog, 9th ed.Washington, DCAmerican Society for Microbiology. pg 1152-72 [Google Scholar] [Crossref]
33. Joulain D., Koenig W. A. (1998). The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E B Verlag: Hamburg, Germany. [Google Scholar] [Crossref]
34. Liu R. H. (2003), “Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals,” >e American Journal of Clinical Nutrition, vol. 78, no. 3, pp. 517S–520S. [Google Scholar] [Crossref]
35. Madubuike Anyanwu U, Rosemary Okoye C. (2017). Antimicrobial activity of Nigerian medicinal plants. J Intercult Ethnopharmacol. 2017 Feb 18; 6(2):240-259. doi: 10.5455/jice.20170106073231. PMID: 28512606; PMCID: PMC5429085. [Google Scholar] [Crossref]
36. Mahasneh A. (2002). Screening of some indigenous Qatari medicinal plant for antimicrobial medicine. Phytother Res 16: 751-753. [Google Scholar] [Crossref]
37. Mahtab Alam Khan (2016). Introduction and importance of medicinal plants and herbs. National Health Portal, Indaia. http://www.nhp.gov.in [Google Scholar] [Crossref]
38. Manjula C. H. and Ammani K. (2012) “Phytochemical analysis and pharmacological importance of Sophora interrupta leaves,”International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 3, no. 4, pp. 1798–1804. View at Google Scholar [Google Scholar] [Crossref]
39. Mann A., Amupitan J. O., Oyewale A. O., Okogun J. I., Ibrahim K. (2009). Antibacterial activity of terpenoidal fractions from Anogeissus leiocarpus and Terminalia avicennioides against community acquired infections. African Journal of Pharmacy and Pharmacology, 3(1): 22-25. [Google Scholar] [Crossref]
40. Mann A., Amupitan J. O., Oyewale A. O., Okogun J. I., and Ibrahim K, (2007). An ethnobotanical survey of indigenous flora for treating tuberculosis and other respiratory diseases in Niger State, Nigeria. J. Phytomed. Therap., 12: 1-21. [Google Scholar] [Crossref]
41. Mann A., Yahaya Y., Banso A., Ajayi, G. O. (March 2008). "Phytochemical and antibacterial screening of Anogeissus leiocarpus against some microorganisms associated with infectious wounds". Academic Journals. [Google Scholar] [Crossref]
42. Mohammed S. L. (2014). Phytochemical Screening and Antimicrobial Activities of Crude Methanolic extract of Pteleopsis Habeensis (Aubrev Ex Keay) Stem Bark against drug Resistant Bacteria and Fungi, International Journal of Technical Research and Applications, 2(6), 26-30. [Google Scholar] [Crossref]
43. Molyneux R. J., Lee S. T., Gardner D. R., Panter K. E., James L. F. (2007). “Phytochemical: the good, the bad and the ugly?” Journal of phytochemistry. 68 (22-24) [Google Scholar] [Crossref]
44. Moronkola D. O. and O. F. Kunle (2014). Int. J. Bio. Chem. Sci. 8(4): 1808-1818. [Google Scholar] [Crossref]
45. Mulligen M. E., Murry-Leisure K. A., Ribner B. S., Standiford H. C., John J. F., Karvick J. A., Kauffman C. A., and Yu V. L. (1993) Methicillin resistant Staphylococcus aureus. American Journal of Medicine, 94, pp. 313–328. [Google Scholar] [Crossref]
46. Nasir B., Fatima H., Ahmed M., Haq I. U. (2015). Recent trends and methods in antimicrobial drug discovery from plant sources. Austin J microbial; 1:1002. [Google Scholar] [Crossref]
47. Ncube N. S., Afolayan A. J., Okoh A. I. (2005). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current method and future trend. African Journal of Biotechnology. 7:1797–806. [Google Scholar] [Crossref]
48. Olaleye M. T. (2007). Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. Journal of Medicinal Plants Research. 1(1): 009-013. [Google Scholar] [Crossref]
49. Owunobi M.O., (1989) Use of Local Herbs for curing Disease. Journal of clinical pharmacy and herbal medicine. 5:75-80 [Google Scholar] [Crossref]
50. Pal S., Shukla Y. (2003). Herbal medicine: Current status and the future. Asian Pacific Journal of Cancer Prevention. 4: 281-288. Phytochemical dictionary a handbook of bioactive compounds from plants, 2nd ed. London: Taylor &Francis. P vii. [Google Scholar] [Crossref]
51. Pier-Giorgio Pietter (2000). Flavonoids as antioxidants. Journal of Natural Products, American Chemical Society and American Society of Pharmacognosy. Vol. 63(7) of 1035-1036 [Google Scholar] [Crossref]
52. Piddock K.J.V., and Wise R. (1989). Mechanisms of resistance to quinolones and clinical perspective. Journal of Antimicrobial Chemotherapy, 23, pp. 475–483.Royal Botanical Gardens, Kew. p. 417. [Google Scholar] [Crossref]
53. Ramawat K. G and Merillon J. M., Bioactive Molecules and Medicinal Plants, Springer, Berlin, Germany, 2008. [Google Scholar] [Crossref]
54. Sies H. (1997) Antioxidants in Disease Mechanisms and Therapy, Advances in Pharmacology, Vol. 38; Academic Press: San Diego. [Google Scholar] [Crossref]
55. Singh M., Chaudhry M. A., Yadava J. N. S., and Sanyal S. C. (1992). The spectrum of antibiotic resistance in human and veterinary isolates of Escherichia coli collected from 1984–1986 in Northern India. Journal of Antimicrobial Chemotherapy, 29, pp. 159–168. [Google Scholar] [Crossref]
56. Singh R., Kumar S., and Arora S. (2007). Evaluation of antioxidant potential of ethyl acetate extract and fraction of Acacia auriculiformis A. Cunn. Food Chem. Toxicol., 45: 12161223. [Google Scholar] [Crossref]
57. Sofowora A. (2008). Medicinal Plants and Traditional Medicine in Africa. 3rd Ed. Ibadan, Nigeria: Spectrum Books Limited. 199 – 204. [Google Scholar] [Crossref]
58. Sofowora A. (1993). Medicinal Plants and Traditional Medicine in Africa. 2nd Ed. Spectrum Books Ltd., Ibadan, Nigeria, ISBN-13: 9782462195, Pages: 289. [Google Scholar] [Crossref]
59. Soladoye M. O., Chukwuma E. C. and Owa F. P. (2012). An ‘Avalanche’ of Plant Species for the Traditional Cure of Diabetes mellitus in South-Western Nigeria Journal of Natural Production Plant Resources, 2 (1): 60-72. [Google Scholar] [Crossref]
60. Stojanoski N., (1999). Development of health culture in Veles and its region from the past to the end of the 20th century. Society of Science and Art, Veles, pp. 13–34. [Google Scholar] [Crossref]
61. Sule W. F., Okonko I. O., Omo-Ogun S., Nwanze J. C., Ojezele M. O., Ojezele O. J., Alli J. A., Soyemi E. T. and Olaonipekun T. O. (2011). Phytochemical properties and invitro antifungal activity of Senna alata Linn crude stem bark extract. Journal of Medicinal Plants Research. S 123: 176-183, [Google Scholar] [Crossref]
62. Tilburt JC, Kaptchuk TJ. (2013). Herbal medicine research and global health: an ethical analysis. Bull World Health Organization 2008; 86(8):594-9 [Google Scholar] [Crossref]
63. Van Vuuren S. F. (2008). Antimicrobial activity of South American medicinal plant. J Ethnopharmacol. 119:462–72. [Google Scholar] [Crossref]
64. Warma S. D., Devamanoharan P. S., Morris S. M. (1995)Crit. Rev. Food Sci. Nutr. 1995, 35, 111-129. [Google Scholar] [Crossref]
65. World Health Organization (2005). National Policy on Traditional Medicine and Regulation of Herbal Medicines\ Report of a WHO Global Survey. World Health Organization, Geneva. p 168. [Google Scholar] [Crossref]
66. World Health Organization (1998). Quality control method for medicinal plant materials. World Health Organization. http://apps.who.int/iris/handle/10665/41986. [Google Scholar] [Crossref]
67. World Health Organization (2011). Quality control method for herbal materials. World Health Organization. http://apps.who.int/iris/handle/10665/44479. [Google Scholar] [Crossref]
68. World Health Organization (1999). Monographs on selected medicinal plants (Vol 1): 1. Geneva: WHO Library Cataloguing in Publication Data. [Google Scholar] [Crossref]
69. World Health Organization (2008). "Traditional Medicine: Definitions" Retrieved 2014-04-20. [Google Scholar] [Crossref]
70. Xu Hx, Lee S. (2009). Activity of plant flavonoids against antibiotic resistant bacteria. Phytother Res 15: 3943. [Google Scholar] [Crossref]