Virtual Experiment–Based Kit as an Innovative Approach to Chemistry Education for Secondary School Students
Authors
Faculty of Human Development, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak (Malaysia)
Faculty of Human Development, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak (Malaysia)
Faculty of Human Development, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak (Malaysia)
Faculty of Human Development, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak (Malaysia)
Article Information
DOI: 10.51244/IJRSI.2025.1210000178
Subject Category: Instructional Technology in education
Volume/Issue: 12/10 | Page No: 2022-2030
Publication Timeline
Submitted: 2025-10-20
Accepted: 2025-10-28
Published: 2025-11-14
Abstract
The rapid growth of digital technology is reshaping science education, particularly in chemistry where laboratory work is often constrained by cost, safety, and limited resources. These challenges are especially pressing in Malaysian Independent Chinese Secondary Schools (MICSS), where many laboratories lack updated facilities and technical support. This study sets out to design and evaluate a virtual experiment–based kit to supplement chemistry teaching and learning. A quasi-experimental design will be carried out with about 30 Junior 3 students in MICSS. Data will be collected through a Chemistry Knowledge Test, an Experimental Skills Test, and a Student Feedback Questionnaire, analyzed using descriptive and inferential statistics, supported by qualitative insights. Expected outcomes include stronger conceptual understanding, improved laboratory skills, and greater interest in STEM learning. The study also seeks to highlight challenges in teacher readiness and technological infrastructure, offering practical guidance for the effective integration of virtual experiments in MICSS classrooms.
Keywords
Virtual Experiments, Chemistry Education, MICSS, Educational Technology, STEM, Artificial Intelligence, Virtual Reality
Downloads
References
1. Abdinejad, M., Ferrag, C., Qorbani, H. S., & Dalili, S. (2021). Developing a Simple and Cost-Effective Markerless Augmented Reality Tool for Chemistry Education. Journal of Chemical Education, 98(5), 1783–1788. https://doi.org/10.1021/acs.jchemed.1c00173 [Google Scholar] [Crossref]
2. Abdullah, N. (2017). Development of Interactive Software for Implementing the Science Process Skills in Science Primary School. International Journal of Academic Research in Business and Social Sciences, 7(6). https://doi.org/10.6007/ijarbss/v7-i6/3033 [Google Scholar] [Crossref]
3. Ahmad, N. L., Yahaya, R., Wahid, H. A., & Fazil, N. S. M. (2023). Role of social factors, self-efficacy and technological support on the use of virtual learning environment among teachers. International Journal of Evaluation and Research in Education, 12(1), 369–376. https://doi.org/10.11591/ijere.v12i1.22628 [Google Scholar] [Crossref]
4. Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences and Humanities Open, 8(1). https://doi.org/10.1016/J.SSAHO.2023.100532 [Google Scholar] [Crossref]
5. Aliyo, A., & Edin, A. (2023). Assessment of Safety Requirements and Their Practices Among Teaching Laboratories of Health Institutes. Microbiology Insights, 16, 117863612311744. https://doi.org/10.1177/11786361231174414 [Google Scholar] [Crossref]
6. Amirbekova, E., Shertayeva, N., & Mironova, E. (2023). Teaching chemistry in the metaverse: the effectiveness of using virtual and augmented reality for visualization. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1184768 [Google Scholar] [Crossref]
7. Anderson and Krathwohl Bloom’s Taxonomy Revised Understanding the New Version of Bloom’s Taxonomy. (n.d.). [Google Scholar] [Crossref]
8. Aw, J. K., Boellaard, K. C., Tan, T. K., Yap, J., Loh, Y. P., Colasson, B., Blanc, étienne, Lam, Y., & Fung, F. M. (2020). Interacting with Three-Dimensional Molecular Structures Using an Augmented Reality Mobile App. Journal of Chemical Education, 97(10), 3877–3881. https://doi.org/10.1021/acs.jchemed.0c00387 [Google Scholar] [Crossref]
9. Bullock, M., Graulich, N., & Huwer, J. (2024). Using an Augmented Reality Learning Environment to Teach the Mechanism of an Electrophilic Aromatic Substitution. Journal of Chemical Education, 101(4), 1534–1543. https://doi.org/10.1021/acs.jchemed.3c00903 [Google Scholar] [Crossref]
10. Cha, S. S., & Seo, B. K. (2018). Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychology Open, 5(1). https://doi.org/10.1177/2055102918755046 [Google Scholar] [Crossref]
11. Chan, P., Van Gerven, T., Dubois, J.-L., & Bernaerts, K. (2021). Virtual chemical laboratories: A systematic literature review of research, technologies and instructional design. Computers and Education Open, 2, 100053. https://doi.org/10.1016/J.CAEO.2021.100053 [Google Scholar] [Crossref]
12. Chansa Chanda, T., Hassan Sain, Z., Shogbesan, Y., Matthew Akpan, W., Chansa Thelma, C., Olayinka Shogbesan, Y., & Vinandi Phiri, E. (2024). Digital Literacy in Education: Preparing Students for the Future Workforce Article in. International Journal of Research (IJR) International Journal of Research. https://doi.org/10.5281/ZENODO.13347718 [Google Scholar] [Crossref]
13. Chen, C. M., Li, M. C., & Tu, C. C. (2024). A Mixed Reality-Based Chemistry Experiment Learning System to Facilitate Chemical Laboratory Safety Education. Journal of Science Education and Technology. https://doi.org/10.1007/S10956-024-10101-3 [Google Scholar] [Crossref]
14. Chong, W., & Muzhou, T. (2024). Teaching Design of High School Chemistry Virtual Experiment in Blended Learning Environment. Advances in Educational Technology and Psychology, 8(4), 39–44. https://doi.org/10.23977/AETP.2024.080406 [Google Scholar] [Crossref]
15. Danmali, S. S., Onansanya, S. A., Atanda, F. A., & Abdullahi, A. (2024). Application of Virtual Reality in STEM Education for Enhancing Immersive Learning and Performance of At-Risk Secondary School Students. International Journal of Research and Innovation in Social Science, VIII(IIIS), 3971–3984. https://doi.org/10.47772/IJRISS.2024.803288S [Google Scholar] [Crossref]
16. Diab, H., Daher, W., Rayan, B., Issa, N., & Rayan, A. (2024). Transforming Science Education in Elementary Schools: The Power of PhET Simulations in Enhancing Student Learning. Multimodal Technologies and Interaction 2024, Vol. 8, Page 105, 8(11), 105. https://doi.org/10.3390/MTI8110105 [Google Scholar] [Crossref]
17. Dong Zong BluePrint Consultation. (2017). [Google Scholar] [Crossref]
18. Education Ministry’s RM100,000 initiative to integrate STEM culture in schools. (n.d.). Retrieved August 17, 2024, from https://www.nst.com.my/news/nation/2024/01/1003191/education-ministrys-rm100000-initiative-integrate-stem-culture-schools [Google Scholar] [Crossref]
19. Fischer-Grote, L., Kothgassner, O. D., & Felnhofer, A. (2019). Risk factors for problematic smartphone use in children and adolescents: a review of existing literature. Neuropsychiatrie : Klinik, Diagnostik, Therapie Und Rehabilitation : Organ Der Gesellschaft Osterreichischer Nervenarzte Und Psychiater, 33(4), 179–190. https://doi.org/10.1007/S40211-019-00319-8 [Google Scholar] [Crossref]
20. Flegr, S., Kuhn, J., & Scheiter, K. (2023). When the whole is greater than the sum of its parts: Combining real and virtual experiments in science education. Computers & Education, 197, 104745. https://doi.org/10.1016/J.COMPEDU.2023.104745 [Google Scholar] [Crossref]
21. Gao, Y., & Zhu, X. (2023). Research on the learning experience of virtual simulation class experimental teaching and learning based on the perspective of nursing students. BMC Nursing, 22(1). https://doi.org/10.1186/s12912-023-01534-z [Google Scholar] [Crossref]
22. Gebremichael Alema, B., Mebrahtu Tesfamariam, G., Gebreyohannes Berhe, G., & Teklu Gebretsadik, T. (2024). Practices and challenges in implementing chemistry laboratory work in secondary schools: a review. African Journal of Chemical Education-AJCE, 14(2), 14. [Google Scholar] [Crossref]
23. Ghani, M. T. A., Hamzah, M., Daud, W. A. A. W., & Ramli, S. (2019). The Conceptual Framework for Learning Arabic Vocabulary through Educational Digital Game. In International Journal of Education (Vol. 4, Issue 25). www.ijepc.com [Google Scholar] [Crossref]
24. Hamed, G., & Aljanazrah, A. (2020). The effectiveness of using virtual experiments on students’ learning in the general physics LAB. Journal of Information Technology Education: Research, 19, 977–996. https://doi.org/10.28945/4668 [Google Scholar] [Crossref]
25. Hamilton, E. R., Rosenberg, J. M., & Akcaoglu, M. (2016). The Substitution Augmentation Modification Redefinition (SAMR) Model: a Critical Review and Suggestions for its Use. TechTrends, 60(5), 433–441. https://doi.org/10.1007/s11528-016-0091-y [Google Scholar] [Crossref]
26. Hanif, H., Hamzah, M., & Harun, R. N. S. R. (2022). Optimizing Participation with Helpers to Enhance Interaction in a Blended Learning Environment. International Journal of Emerging Technologies in Learning, 17(17), 155–170. https://doi.org/10.3991/ijet.v17i17.26415 [Google Scholar] [Crossref]
27. Haug, S., Paz Castro, R., Kwon, M., Filler, A., Kowatsch, T., & Schaub, M. P. (2015). Smartphone use and smartphone addiction among young people in Switzerland. Journal of Behavioral Addictions, 4(4), 299–307. https://doi.org/10.1556/2006.4.2015.037 [Google Scholar] [Crossref]
28. Idris, R., & Bacotang, J. (2023). Exploring STEM Education Trends in Malaysia: Building a Talent Pool for Industrial Revolution 4.0 and Society 5.0. International Journal of Academic Research in Progressive Education and Development, 12(2). https://doi.org/10.6007/ijarped/v12-i2/16825 [Google Scholar] [Crossref]
29. Idris, R., Govindasamy, P., & Nachiappan, S. (2023). Challenge and Obstacles of STEM Education in Malaysia. International Journal of Academic Research in Business and Social Sciences, 13(4). https://doi.org/10.6007/ijarbss/v13-i4/16676 [Google Scholar] [Crossref]
30. Insufficient graduates with STEM skills may impact industrial and economic growth, says Mustapha. (n.d.). Retrieved August 17, 2024, from https://www.nst.com.my/news/nation/2024/05/1046120/insufficient-graduates-stem-skills-may-impact-industrial-and-economic [Google Scholar] [Crossref]
31. Jagodziński, P., & Wolski, R. (2015). Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory. Journal of Science Education and Technology, 24(1), 16–28. https://doi.org/10.1007/s10956-014-9517-5 [Google Scholar] [Crossref]
32. Keskin Geçer, A., & Zengin, R. (2015). Science Teachers’ Attitudes Towards Laboratory Practises and Problems Encountered. In International Journal of Education and Research (Vol. 3, Issue 11). www.ijern.com [Google Scholar] [Crossref]
33. Kupiainen, R. (2022). Making the “digital leap” in Finnish schools. Nordisk Tidsskrift for Pedagogikk Og Kritikk, 8(2022), 287. https://doi.org/10.23865/NTPK.V8.4068 [Google Scholar] [Crossref]
34. Mai, M. Y., & Muruges, G. R. (2022). Primary School Science Teachers’ Attitude towards Using Virtual Learning Environment (VLE) In Teaching Science. European Journal of Education, 5(1), 129–140. https://doi.org/10.26417/ejed.v1i3.p155-162 [Google Scholar] [Crossref]
35. Malaysia: daily screen time online by activity 2022 | Statista. (n.d.). Retrieved August 17, 2024, from https://www.statista.com/statistics/803614/daily-time-spent-using-online-media-by-activity-malaysia/ [Google Scholar] [Crossref]
36. Marinkovic, N., Sasaki, K., Adzic, R. R., Rodrigues, M., & Carvalho, S. (2022). Physics Education Virtual experimental activities: a new approach You may also like (Invite) Insights in Measuring Particle Size of Multiatomic Nanoparticles By XAS Virtual experimental activities: a new approach. [Google Scholar] [Crossref]
37. Mayer, R. E. . (2010). Multimedia learning. Cambridge University Press. [Google Scholar] [Crossref]
38. Md Hassan, N., Majid, N. A., & Hassan, N. K. A. (2020). Validation of learning environment inventory for secondary school contexts. International Journal of Evaluation and Research in Education, 9(2), 379–384. https://doi.org/10.11591/ijere.v9i2.20444 [Google Scholar] [Crossref]
39. Nechypurenko, P. P., Chernova, M. P., Evangelist, O. O., & Selivanova, T. V. (2023). Enhancing student research activities through virtual chemical laboratories: a case study on the topic of Solutions. Educational Technology Quarterly, 2023(2), 188–209. https://doi.org/10.55056/ETQ.603 [Google Scholar] [Crossref]
40. Positioning malaysia as a regional leader in the digital economy: the economic opportunities of digital transformation and google’s contribution. (2021). [Google Scholar] [Crossref]
41. Prakash Chand, S. (2023). Constructivism in Education: Exploring the Contributions of Piaget, Vygotsky, and Bruner. International Journal of Science and Research (IJSR), 12(7), 274–278. https://doi.org/10.21275/sr23630021800 [Google Scholar] [Crossref]
42. Romrell, D., Kidder, L. C., & Wood, E. (n.d.). The SAMR Model as a Framework for Evaluating mLearning. [Google Scholar] [Crossref]
43. Shana, Z., & Abulibdeh, E. S. (2020). Science practical work and its impact on students’ science achievement. Journal of Technology and Science Education, 10(2), 199–215. https://doi.org/10.3926/JOTSE.888 [Google Scholar] [Crossref]
44. Soh, P. C. H., Yan, Y. L., Ong, T. S., & Teh, B. H. (2012). Digital divide amongst urban youths in Malaysia - Myth or reality? Asian Social Science, 8(15), 75–85. https://doi.org/10.5539/ass.v8n15p75 [Google Scholar] [Crossref]
45. Statistik Pendidikan Tinggi 2023 : Kementerian Pendidikan Tinggi. (n.d.). [Google Scholar] [Crossref]
46. Teig, N., Scherer, R., & Nilsen, T. (2019). I know i can, but do i have the time? The role of teachers’ self-efficacy and perceived time constraints in implementing cognitive-activation strategies in science. Frontiers in Psychology, 10(JULY). https://doi.org/10.3389/fpsyg.2019.01697 [Google Scholar] [Crossref]
47. Termizi Borhan, M., & Md Yassin, S. (n.d.). The 4 th International Research Symposium on Problem-Based Learning (IRSPBL) 2013 Implementation of Problem Based Learning (PBL)-in a Malaysian Teacher Education Course: Issues and Benefits From Students Perspective. [Google Scholar] [Crossref]
48. The Changes and Challenges of Educational Technology Innovation on the Role of Teachers. (2024). Advances in Educational Technology and Psychology, 8(5). https://doi.org/10.23977/aetp.2024.080526 [Google Scholar] [Crossref]
49. van Riesen, S., Gijlers, H., Anjewierden, A., & de Jong, T. (2018). Supporting learners’ experiment design. Educational Technology Research and Development, 66(2), 475–491. https://doi.org/10.1007/S11423-017-9568-4/TABLES/2 [Google Scholar] [Crossref]
50. Wohlfart, O., Wagner, A. L., & Wagner, I. (2023). Digital tools in secondary chemistry education – added value or modern gimmicks? Frontiers in Education, 8. https://doi.org/10.3389/FEDUC.2023.1197296/ [Google Scholar] [Crossref]
51. Yılmaz, Ö. (2023). The Role of Technology in Modern Science Education. Eğitimde Güncel Araştırmalar - VI. https://doi.org/10.58830/OZGUR.PUB383.C1704 [Google Scholar] [Crossref]
52. Zhang, N., & Liu, Y. (2023). Design and implementation of virtual laboratories for higher education sustainability: a case study of Nankai University. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1322263 [Google Scholar] [Crossref]