International Journal of Research and Innovation in Applied Science (IJRIAS) |Volume VII, Issue XII, December 2022|ISSN 2454-6194
Usman, A*; Sunday, J.A and Olaore, K.O
Department of Science Laboratory Technology (Physics/ Electronics Unit), Kwara State Polytechnic, Ilorin, Nigeria
*Corresponding Author
Abstract: In this study, characteristic variation of ultraviolent light and air temperature were observed, this research work critically analyses some specific days with field data at an experimental site near the Physics/Electronics Unit Laboratory Ilorin, Nigeria between ultraviolet light and air temperature. For the field observations, an instrumented Meteorological Weather Smart System was set up at an experimental site near the Physics/Electronics Unit Laboratory Kwara State Polytechnic, Ilorin for a period of two weeks (18th March-1st April, 2019). The ultraviolet light and air temperature measurement from the Weather Smart System were recorded every 10 seconds and averaged over 2 minutes interval. The sampled data was then stored in the datalogger storage module. After the removal of spurious measurement values, the data stored was further reduced to hourly averages using the Microcal Origin (version 7.0) data analysis software. The results showed that the measured ultraviolent light, UV during the daytime increases until 1200 hrs with maximum value of about 450 Wm-2 and minimum value of about 9 Wm-2 at 800 hrs (DOY 85). The measured air temperature, Ta value of 32.6 0C observed at 1200 hrs (DOY 85), represented the maximum value for the entire period of the study. The value of 193 Wm-2 was observed at1100 hrs (DOY 81), represented the minimum value for the entire period of the study due to the cloudy condition of the sky which reduces the amount of incoming solar radiation reaching the earth surface.
Keywords: Air temperature, Cloudy, Field, Solar radiation and Ultraviolet light.
I. INTRODUCTION
Electromagnetic radiation comes from the sun and transmitted in waves or particles at different wavelengths and frequencies. This broad range of wavelengths is known as the electromagnetic (EM) spectrum. The spectrum is generally divided into seven regions in order of decreasing wavelength and increasing energy and frequency. The common designations are radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma-rays.
Ultraviolet (UV), light falls in the range of the EM spectrum between visible light and X-rays. It has frequencies of about 8 × 1014 to 3 × 1016 cycles per second, or hertz (Hz), and wavelengths of about 380 nanometers (1.5 × 10−5 inches) to about 10 nm (4 × 10−7 inches). According to the U.S. Navy’s “Ultraviolet Radiation Guide,” UV is generally divided into three sub-bands: