Experimental and Full-scale Plant Assessment of Biogas Production via Anaerobic Co-digestion
Abdulkadir M. Zabi, Abdulfatai A. Adisa, Umar A. Aji, Vincent C. Ntichika, Madu D. Gadzama, Ebube P. Nwadiokwu- February 2023 Page No.: 01-11
Biogas production from anaerobic digestion of organic waste is an important renewable energy source with great potential of replacing fossil fuels for heat and electricity generation. However, efficient anaerobic digestion process and energy conversion technology must be ensured for better biogas yield and energy generation. The present study involves experimental assessment of biogas production from anaerobic co-digestion of biomass feedstock. The experimental stage involves the co-digestion of livestock manure with slaughterhouse waste and vegetable waste, different sets of experiments were conducted at mesophilic condition of 37o C, 25 days of retention time and utilizing water displacement experimental setup. The biogas yields obtained for the co-digestion of Cow dung + Poultry manure (S1), Cow dung + Sheep manure (S2), Slaughterhouse waste + Poultry manure (S3), Sheep dung + Poultry manure (S4), Poultry manure + Whey (S5) and Vegetable waste + Cow (S6) are 0.0236m3/kg, 0.0231m3/kg, 0.0264m3/kg, 0.0234m3/kg, 0.0266m3/kg and 0.0191m3/kg respectively. These values are acceptable values of biogas yields for livestock manure co-digestion. However the co-digestion revealed that the biogas yields obtained are slightly above the minimum reported value for co-digestion of manure slurry, this is due to the nature of the experimental setup used. According to the simulation conducted with engineering equation solver software on the modeled biogas plant, energy efficiency of 42.55% was achieved by integrating the digestion process to the steam cycle which provides better heat utilization.
Page(s): 01-11 Date of Publication: 28 February 2023
Abdulkadir M. Zabi
Department of Energy Systems Engineering, Cyprus International University, Nicosia, Cyprus
Abdulfatai A. Adisa
Department of Chemical Engineering, University of Lagos Nigeria
Umar A. Aji
Department of Science Technology, Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria
Vincent C. Ntichika
Department of Chemical Engineering, University of Lagos Nigeria
Madu D. Gadzama
Dangote Fertili1ser Company, Nigeria
Ebube P. Nwadiokwu
Dangote Fertili1ser Company, Nigeria
1. Fernández et al., (2015). Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass and Bioenergy, 81, 55–62.
2. Deng et al., (2017). Application and development of biogas technology for the treatment of waste in China. Renewable and Sustainable Energy Reviews.
3. Zhang et al., (2017). Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: Effect of reduction of the hydraulic retention time at a constant organic loading rate. Waste Management, 64, 340–347
4. Nasir et al., (2015). Experimental Investigation on the Effects of Digester Size on Biogas Production from Cow Dung. American Journal of Engineering Research, 4(1), 181–186.
5. Zhou, S., Zhang, Y., and Dong, Y. (2012). Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy, 46(1), 644–648
6. Mao et al., (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews. 23, 25–32.
7. Aguilera, P. G., and Gutiérrez Ortiz, F. J. (2016). Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage–sludge. Energy Conversion and Management. 12, 13–17.
8. Wei et al., (2015). Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresource Technology.
9. Zhang et al., (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Applied Thermal Engineering 109 (2016) 423–431
10. Matheri et al., (2015). The Kinetic of Biogas Rate from Cow Dung and Grass Clippings. 7th International Conference on Latest Trends in Engineering & Technology (ICLTET’2015), 4(1), 1–5.
11. Escalante et al., (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718.
12. Zhou, S., Zhang, Y., and Dong, Y. (2012). Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy, 46(1), 644–648
13. Wahyuni et al., (2018). Application of small digester biogas for energy supply in rural areas. IOP Conference Series: Earth and Environmental Science, 141(1).
14. Echeverr, A. (2016). Biogas from slaughterhouse waste: Mixture interactions in co-digestion Biomass and Bioenergy, 81, 55–62.
15. Escalante et al., (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718.
16. Alfa et al., (2014). Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresource Technology 157 (2014) 270–277.
17. Akash et al., (2017). A review on production of Biogas from Slaughter house waste and poultry litter Anaerobic Digestion. Irjet, 04(04), 1–5.
18. Guo, M., Song, W., and Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews.
Abdulkadir M. Zabi, Abdulfatai A. Adisa, Umar A. Aji, Vincent C. Ntichika, Madu D. Gadzama, Ebube P. Nwadiokwu “Experimental and Full-scale Plant Assessment of Biogas Production via Anaerobic Co-digestion” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.01-11 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/01-11.pdf
A brief summary of recent developments of cathode electrode materials in lithium-ion batteries
Khang Huynh, Md Wahidul Hasan- February 2023 Page No.: 12-24
Lithium-ion batteries have played an important role in large energy storage applications such as electric vehicles and portable devices due to their high energy density. Due to growing demands for better performance batteries with superior cycling stability and higher energy density, various investigations were performed on finding new cathode materials to satisfy those requirements. This review will first go over the current challenges of lithium-ion batteries and briefly outline some recent developments in carbon-based nanomaterials and low-Co Ni-based layered oxide cathodes. Research on various carbon materials coating such as single/multi-walled carbon nanotubes, reduced graphene oxide will be presented. Furthermore, this review will summarize the advancements in low-Co layered oxide and their reported performances. Lastly, the perspectives of future advancements in cathode materials will be presented
Page(s): 12-24 Date of Publication: 28 February 2023
Khang Huynh
Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, United States
Md Wahidul Hasan
Department of Mechanical Engineering, South Dakota School of Mines and Technology, United States
1. Phan, T.N.; Gong, M.K.; Thangavel, R.; Lee, Y.S.; Ko, C.H. Ordered Mesoporous Carbon CMK-8 Cathodes for High-Power and Long-Cycle Life Sodium Hybrid Capacitors. J Alloys Compd 2018, 743, 639–645, doi:10.1016/j.jallcom.2018.02.007.
2. Wang, L.; Guo, M.; Zhan, J.; Jiao, X.; Chen, D.; Wang, T. A New Design of an Electrochromic Energy Storage Device with High Capacity, Long Cycle Lifetime and Multicolor Display. J Mater Chem A Mater 2020, 8, 17098–17105, doi:10.1039/D0TA04824K.
3. Akinwolemiwa, B.; Chen, G. Fundamental Consideration for Electrochemical Engineering of Supercapattery. J Braz Chem Soc 2018, doi:10.21577/0103-5053.20180010.
4. Hasan, M.W.; Huynh, K.; Soha, T.; Rubayet, J.; Wasi, S. Investigation of a Cow Urine-Based Power Generation Technology Model for a Cost-Effective and Sustainable Energy Source. Int J Innov Appl Stud 2023, 38, 779–793.
5. Xie, J.; Lu, Y.-C. A Retrospective on Lithium-Ion Batteries. Nat Commun 2020, 11, 2499, doi:10.1038/s41467-020-16259-9.
6. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. Journal of Energy Chemistry 2021, 59, 83–99, doi:10.1016/j.jechem.2020.10.017.
7. Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives. Renewable and Sustainable Energy Reviews 2020, 131, 110048, doi:10.1016/j.rser.2020.110048.
8. Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent Progress in the Synthesis of Graphene and Derived Materials for next Generation Electrodes of High Performance Lithium Ion Batteries. Prog Energy Combust Sci 2019, 75, 100786, doi:10.1016/j.pecs.2019.100786.
9. Chikkannanavar, S.B.; Kim, J.H.; Jung, W. Degradation and Life Performance of Transition Metal Oxide Cathodes Used in Lithium‐ I on Batteries. In Transition Metal Oxides for Electrochemical Energy Storage; Wiley, 2022; pp. 257–272.
10. Sanchez, J.S.; Xu, J.; Xia, Z.; Sun, J.; Asp, L.E.; Palermo, V. Electrophoretic Coating of LiFePO4/Graphene Oxide on Carbon Fibers as Cathode Electrodes for Structural Lithium Ion Batteries. Compos Sci Technol 2021, 208, 108768, doi:10.1016/j.compscitech.2021.108768.
11. Fayed, M.G.; Attia, S.Y.; Barakat, Y.F.; El-Shereafy, E.E.; Rashad, M.M.; Mohamed, S.G. Carbon and Nitrogen Co-Doped MoS2 Nanoflakes as an Electrode Material for Lithium-Ion Batteries and Supercapacitors. Sustainable Materials and Technologies 2021, 29, e00306, doi:10.1016/j.susmat.2021.e00306.
12. Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J Electrochem Soc 2017, 164, A5019–A5025, doi:10.1149/2.0251701jes.
13. Schipper, F.; Erickson, E.M.; Erk, C.; Shin, J.-Y.; Chesneau, F.F.; Aurbach, D. Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. J Electrochem Soc 2017, 164, A6220–A6228, doi:10.1149/2.0351701jes.
14. Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Adv Energy Mater 2017, 7, 1700715, doi:10.1002/aenm.201700715.
15. Lung-Hao Hu, B.; Wu, F.-Y.; Lin, C.-T.; Khlobystov, A.N.; Li, L.-J. Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery beyond Theoretical Capacity. Nat Commun 2013, 4, 1687, doi:10.1038/ncomms2705.
16. Eftekhari, A. On the Theoretical Capacity/Energy of Lithium Batteries and Their Counterparts. ACS Sustain Chem Eng 2019, 7, 3684–3687, doi:10.1021/acssuschemeng.7b04330.
17. Jiang, Y.; Zhao, H.; Yue, L.; Liang, J.; Li, T.; Liu, Q.; Luo, Y.; Kong, X.; Lu, S.; Shi, X.; et al. Recent Advances in Lithium-Based Batteries Using Metal Organic Frameworks as Electrode Materials. Electrochem commun 2021, 122, 106881, doi:10.1016/j.elecom.2020.106881.
18. Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An Overview on the Advances of LiCoO 2 Cathodes for Lithium‐Ion Batteries. Adv Energy Mater 2021, 11, 2000982, doi:10.1002/aenm.202000982.
19. Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. In Proceedings of the SoutheastCon 2016; IEEE, March 2016; pp. 1–6.
20. Mahmood, N.; Hou, Y. Electrode Nanostructures in Lithium-Based Batteries. Advanced Science 2014, 1, 1400012, doi:10.1002/advs.201400012.
21. Manthiram, A. Materials Challenges and Opportunities of Lithium Ion Batteries. J Phys Chem Lett 2011, 2, 176–184, doi:10.1021/jz1015422.
22. Shin, J.; Ryu, W.-H.; Park, K.-S.; Kim, I.-D. Morphological Evolution of Carbon Nanofibers Encapsulating SnCo Alloys and Its Effect on Growth of the Solid Electrolyte Interphase Layer. ACS Nano 2013, 7, 7330–7341, doi:10.1021/nn403003b.
23. Hong, Y.J.; Son, M.Y.; Kang, Y.C. One-Pot Facile Synthesis of Double-Shelled SnO 2 Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-Ion Batteries. Advanced Materials 2013, 25, 2279–2283, doi:10.1002/adma.201204506.
24. Zhou, S.; Mei, T.; Wang, X.; Qian, Y. Crystal Structural Design of Exposed Planes: Express Channels, High-Rate Capability Cathodes for Lithium-Ion Batteries. Nanoscale 2018, 10, 17435–17455, doi:10.1039/C8NR04842H.
25. Shi, F.; Song, Z.; Ross, P.N.; Somorjai, G.A.; Ritchie, R.O.; Komvopoulos, K. Failure Mechanisms of Single-Crystal Silicon Electrodes in Lithium-Ion Batteries. Nat Commun 2016, 7, 11886, doi:10.1038/ncomms11886.
26. Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770, doi:10.1016/j.joule.2020.02.010.
27. Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv Energy Mater 2014, 4, 1300882, doi:10.1002/aenm.201300882.
28. Liu, B.; Zhang, J.-G.; Shen, G. Pursuing Two-Dimensional Nanomaterials for Flexible Lithium-Ion Batteries. Nano Today 2016, 11, 82–97, doi:10.1016/j.nantod.2016.02.003.
29. Higgins, T.M.; Park, S.-H.; King, P.J.; Zhang, C. (John); McEvoy, N.; Berner, N.C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; et al. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano 2016, 10, 3702–3713, doi:10.1021/acsnano.6b00218.
30. Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P.K.; Guo, X.; Di, Z.; Wang, X.; Li, H. Flexible and Ion-Conducting Membrane Electrolytes for Solid-State Lithium Batteries: Dispersion of Garnet Nanoparticles in Insulating Polyethylene Oxide. Nano Energy 2016, 28, 447–454, doi:10.1016/j.nanoen.2016.09.002.
31. Cheng, D.; Wu, P.; Wang, J.; Tang, X.; An, T.; Zhou, H.; Zhang, D.; Fan, T. Synergetic Pore Structure Optimization and Nitrogen Doping of 3D Porous Graphene for High Performance Lithium Sulfur Battery. Carbon N Y 2019, 143, 869–877, doi:10.1016/j.carbon.2018.11.032.
32. Liang, J.; Wang, S.; Yu, H.; Zhao, X.; Wang, H.; Tong, Y.; Tang, Q.; Liu, Y. Solution-Processed PDMS/SWCNT Porous Electrodes with High Mass Loading: Toward High Performance All-Stretchable-Component Lithium Ion Batteries. Sustain Energy Fuels 2020, 4, 2718–2726, doi:10.1039/C9SE01120J.
33. Mujahid, M.; Ullah Khan, R.; Mumtaz, M.; Mubasher; Soomro, S.A.; Ullah, S. NiFe2O4 Nanoparticles/MWCNTs Nanohybrid as Anode Material for Lithium-Ion Battery. Ceram Int 2019, 45, 8486–8493, doi:10.1016/j.ceramint.2019.01.160.
34. Nulu, A.; Nulu, V.; Sohn, K.Y. Silicon and Porous MWCNT Composite as High Capacity Anode for Lithium-Ion Batteries. Korean Journal of Chemical Engineering 2020, 37, 1795–1802, doi:10.1007/s11814-020-0559-5.
35. Aliahmad, N.; Biswas, P.K.; Dalir, H.; Agarwal, M. Synthesis of V2O5/Single-Walled Carbon Nanotubes Integrated into Nanostructured Composites as Cathode Materials in High Performance Lithium-Ion Batteries. Energies (Basel) 2022, 15, 552, doi:10.3390/en15020552.
36. Zhao, X.; Hayner, C.M.; Kung, H.H. Self-Assembled Lithium Manganese Oxide Nanoparticles on Carbon Nanotube or Graphene as High-Performance Cathode Material for Lithium-Ion Batteries. J Mater Chem 2011, 21, 17297, doi:10.1039/c1jm12373d.
37. Perumal, P.; Abhilash, K.P.; Selvin, P.C.; Sofer, Z. A Short Investigation on LiMn2O4 Wrapped with MWCNT as Composite Cathode for Lithium-Ion Batteries. Bulletin of Materials Science 2021, 44, 243, doi:10.1007/s12034-021-02532-0.
38. Geng, D.; Yang, H.Y. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials 2018, 30, 1800865, doi:10.1002/adma.201800865.
39. Qiu, B.; Zhao, X.; Xia, D. In Situ Synthesis of CoS2/RGO Nanocomposites with Enhanced Electrode Performance for Lithium-Ion Batteries. J Alloys Compd 2013, 579, 372–376, doi:10.1016/j.jallcom.2013.05.148.
40. Li, J.; Huang, J.; Li, J.; Cao, L.; Qi, H.; Cheng, Y.; Xi, Q.; Dang, H. Improved Li-Ion Diffusion Process in TiO2/RGO Anode for Lithium-Ion Battery. J Alloys Compd 2017, 727, 998–1005, doi:10.1016/j.jallcom.2017.08.121.
41. Zhang, H.; Rong, Y.; Cao, Y. Enhanced Cycling Stability of Cu-V2O5 Composited with Low-Fraction RGO as Cathodes for Lithium Ion Batteries. J Alloys Compd 2021, 863, 158761, doi:10.1016/j.jallcom.2021.158761.
42. Chen, H.; Gao, S.; Lan, X.; Wang, W.; Ke, B.; Lu, S.; Gu, C.; Li, G. Plasma Phosphorization of Self-Adaptive Electrode Cu3P@RGO for Lithium Ion Storage. Vacuum 2021, 193, 110537, doi:10.1016/j.vacuum.2021.110537.
43. Gu, B.; Zhan, C.; Liu, B.H.; Wang, G.; Zhang, Q.; Zhang, M.; Shen, Z. Two-Dimensional Layered Lithium Lanthanum Titanium Oxide/Graphene-like Composites as Electrodes for Lithium-Ion Batteries. Dalton Transactions 2022, 51, 7076–7083, doi:10.1039/D2DT00751G.
44. Tian, Y.; Qiu, Y.; Liu, Z.; Wei, X.; Cao, H. LiMnO 2 @rGO Nanocomposites for High‐performance Lithium‐ion Battery Cathodes. Nanotechnology 2021, 32, 015402, doi:10.1088/1361-6528/abb48c.
45. He, D.; Zhang, Y.; Cao, D.; Sun, M.; Xia, J.; Yang, Y.; Ding, Y.; Chen, H. A Flexible Free-Standing FeF3/Reduced Graphene Oxide Film as Cathode for Advanced Lithium-Ion Battery. J Alloys Compd 2022, 909, 164702, doi:10.1016/j.jallcom.2022.164702.
46. Zoller, F.; Böhm, D.; Luxa, J.; Döblinger, M.; Sofer, Z.; Semenenko, D.; Bein, T.; Fattakhova-Rohlfing, D. Freestanding LiFe0.2Mn0.8PO4/RGO Nanocomposites as High Energy Density Fast Charging Cathodes for Lithium-Ion Batteries. Mater Today Energy 2020, 16, 100416, doi:10.1016/j.mtener.2020.100416.
47. Lin, Y.; Sun, L.; Wang, J.; Shi, X.; Zhang, Y.; Gong, Y.; Sun, C.; Zhang, Y. RGO Wrapped Tungsten Trioxide Hydrate on CNT-Modified Carbon Cloth as Self-Supported High-Rate Lithium-Ion Battery Electrode. Electrochim Acta 2021, 394, 139162, doi:10.1016/j.electacta.2021.139162.
48. Li, C.; Yuan, H.; Yang, Z. Enhanced Electrochemical Performance of Boron-Doped Graphene-Decorated LiFePO4@C Cathode Material for Lithium-Ion Batteries. Solid State Ion 2020, 352, 115366, doi:10.1016/j.ssi.2020.115366.
49. Chen, A.; Li, C.; Zhang, C.; Li, W.; Yang, Q. The Mechanical Hybrid of V2O5 Microspheres/Graphene as an Excellent Cathode for Lithium-Ion Batteries. Journal of Solid State Electrochemistry 2022, 26, 729–738, doi:10.1007/s10008-021-05108-4.
50. Zhang, Y.; Yuan, X.; Lu, T.; Gong, Z.; Pan, L.; Guo, S. Hydrated Vanadium Pentoxide/Reduced Graphene Oxide Composite Cathode Material for High-Rate Lithium Ion Batteries. J Colloid Interface Sci 2021, 585, 347–354, doi:10.1016/j.jcis.2020.11.074.
51. Yang, P.; Xi, X.; Huang, T.; Zhong, Q.; Jiang, B.; Liu, R.; Wu, D. An Acid-Assisted Vacuum Filtration Approach towards Flexible PDI/SWCNT Cathodes for Highly Stable Organic Lithium Ion Batteries. Electrochim Acta 2020, 338, 135771, doi:10.1016/j.electacta.2020.135771.
52. Wang, Y.; Hu, G.; Cao, Y.; Peng, Z.; Lai, X.; Xie, X.; Du, K. Highly Atom-Economical and Environmentally Friendly Synthesis of LiMn0.8Fe0.2PO4/RGO/C Cathode Material for Lithium-Ion Batteries. Electrochim Acta 2020, 354, 136743, doi:10.1016/j.electacta.2020.136743.
53. Wang, B.; Lin, X.-Y.; Tang, Y.; Wang, Q.; Leung, M.K.H.; Lu, X.-Y. Recycling LiCoO2 with Methanesulfonic Acid for Regeneration of Lithium-Ion Battery Electrode Materials. J Power Sources 2019, 436, 226828, doi:10.1016/j.jpowsour.2019.226828.
54. Liu, Z.; Scott Cronin, J.; Chen-Wiegart, Y.K.; Wilson, J.R.; Yakal-Kremski, K.J.; Wang, J.; Faber, K.T.; Barnett, S.A. Three-Dimensional Morphological Measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 Lithium-Ion Battery Cathodes. J Power Sources 2013, 227, 267–274, doi:10.1016/j.jpowsour.2012.11.043.
55. Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An Overview on the Advances of LiCoO 2 Cathodes for Lithium‐Ion Batteries. Adv Energy Mater 2021, 11, 2000982, doi:10.1002/aenm.202000982.
56. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium‐Ion Batteries. Advanced Materials 2018, 30, 1800561, doi:10.1002/adma.201800561.
57. Kim, Y.; Seong, W.M.; Manthiram, A. Cobalt-Free, High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries: Progress, Challenges, and Perspectives. Energy Storage Mater 2021, 34, 250–259, doi:10.1016/j.ensm.2020.09.020.
58. Xiao, B.; Sun, X. Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials: An Overview of the Fundamental Origins and Remedying Approaches. Adv Energy Mater 2018, 8, 1802057, doi:10.1002/aenm.201802057.
59. Xu, G.; Liu, X.; Daali, A.; Amine, R.; Chen, Z.; Amine, K. Challenges and Strategies to Advance High‐Energy Nickel‐Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Adv Funct Mater 2020, 30, 2004748, doi:10.1002/adfm.202004748.
60. Wang, X.; Ding, Y.; Deng, Y.; Chen, Z. Ni‐Rich/Co‐Poor Layered Cathode for Automotive Li‐Ion Batteries: Promises and Challenges. Adv Energy Mater 2020, 10, 1903864, doi:10.1002/aenm.201903864.
61. Voronina, N.; Sun, Y.-K.; Myung, S.-T. Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Energy Lett 2020, 5, 1814–1824, doi:10.1021/acsenergylett.0c00742.
62. Liao, B.; Li, H.; Xu, M.; Xing, L.; Liao, Y.; Ren, X.; Fan, W.; Yu, L.; Xu, K.; Li, W. Designing Low Impedance Interface Films Simultaneously on Anode and Cathode for High Energy Batteries. Adv Energy Mater 2018, 8, 1800802, doi:10.1002/aenm.201800802.
63. Bi, Y.; Tao, J.; Wu, Y.; Li, L.; Xu, Y.; Hu, E.; Wu, B.; Hu, J.; Wang, C.; Zhang, J.-G.; et al. Reversible Planar Gliding and Microcracking in a Single-Crystalline Ni-Rich Cathode. Science (1979) 2020, 370, 1313–1317, doi:10.1126/science.abc3167.
64. Xu, Q.; Li, X.; Kheimeh Sari, H.M.; Li, W.; Liu, W.; Hao, Y.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y.; et al. Surface Engineering of LiNi0.8Mn0.1Co0.1O2 towards Boosting Lithium Storage: Bimetallic Oxides versus Monometallic Oxides. Nano Energy 2020, 77, 105034, doi:10.1016/j.nanoen.2020.105034.
65. Zhang, Z.; Bai, M.; Fan, X.; Yi, M.; Zhao, Y.; Zhang, J.; Hong, B.; Zhang, Z.; Hu, G.; Lai, Y. A Low Cost Single-Crystalline LiNi0.60Co0.10Mn0.30O2 Layered Cathode Enables Remarkable Cycling Performance of Lithium-Ion Batteries at Elevated Temperature. J Power Sources 2021, 503, 230028, doi:10.1016/j.jpowsour.2021.230028.
66. Shen, Y.; Xue, H.; Wang, S.; Wang, Z.; Zhang, D.; Yin, D.; Wang, L.; Cheng, Y. A Highly Promising High-Nickel Low-Cobalt Lithium Layered Oxide Cathode Material for High-Performance Lithium-Ion Batteries. J Colloid Interface Sci 2021, 597, 334–344, doi:10.1016/j.jcis.2021.04.008.
67. Cui, Z.; Xie, Q.; Manthiram, A. A Cobalt‐ and Manganese‐Free High‐Nickel Layered Oxide Cathode for Long‐Life, Safer Lithium‐Ion Batteries. Adv Energy Mater 2021, 11, 2102421, doi:10.1002/aenm.202102421.
68. Xi, R.; Zhang, J.; Lan, Z.; Yuan, Y.; Kang, J.; Li, Y.; Wang, J.; Zhang, C.; Hou, X. High-Nickel and Cobalt-Free Layered LiNi0.90Mn0.06Al0.04O2 Cathode for Lithium-Ion Batteries. Ceram Int 2022, 48, 36690–36696, doi:10.1016/j.ceramint.2022.08.228.
69. Jeon, Y.J.; Lee, J.; Han, Y.; Yim, T. 1, 2‐Propyleneglycol Sulfite as a Surface Stabilizing Agent for Ni‐rich Layered Oxide Cathodes of lithium‐ion Batteries. Int J Energy Res 2022, 46, 19402–19413, doi:10.1002/er.8511.
70. Gomez‐Martin, A.; Reissig, F.; Frankenstein, L.; Heidbüchel, M.; Winter, M.; Placke, T.; Schmuch, R. Magnesium Substitution in Ni‐Rich NMC Layered Cathodes for High‐Energy Lithium Ion Batteries. Adv Energy Mater 2022, 12, 2103045, doi:10.1002/aenm.202103045.
71. Ke, B.; Chu, S.; Li, J.-C.; Xu, X.; Yao, H.; Guo, S.; Zhou, H. A New Li-Rich Layered Cathode with Low Lattice Strain for Lithium-Ion Batteries. Chemical Communications 2022, 58, 10488–10491, doi:10.1039/D2CC04044A.
72. Zhou, L.; Yang, H.; Han, T.; Song, Y.; Yang, G.; Li, L. Carbon-Based Modification Materials for Lithium-Ion Battery Cathodes: Advances and Perspectives. Front Chem 2022, 10, doi:10.3389/fchem.2022.914930.
73. Guo, L.; Ren, L.; Wan, L.; Li, J. Heterogeneous Carbon/N-Doped Reduced Graphene Oxide Wrapping LiMn0.8Fe0.2PO4 Composite for Higher Performance of Lithium Ion Batteries. Appl Surf Sci 2019, 476, 513–520, doi:10.1016/j.apsusc.2018.12.227.
74. Ma, F.; Zhang, X.; He, P.; Zhang, X.; Wang, P.; Zhou, H. Synthesis of Hierarchical and Bridging Carbon-Coated LiMn 0.9 Fe 0.1 PO 4 Nanostructure as Cathode Material with Improved Performance for Lithium Ion Battery. J Power Sources 2017, 359, 408–414, doi:10.1016/j.jpowsour.2017.05.067.
75. Fu, Y.; Wei, Q.; Zhang, G.; Zhong, Y.; Moghimian, N.; Tong, X.; Sun, S. LiFePO4-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene. Materials 2019, 12, 842, doi:10.3390/ma12060842.
76. Chen, J.; Li, W.; Jiang, J.; Wu, C.; Liu, Y. Facile and Creative Design of Hierarchical Vanadium Oxides@graphene Nanosheet Patterns. RSC Adv 2016, 6, 13323–13327, doi:10.1039/C5RA25521J.
77. Deng, Y.; Wu, Z.; Liang, R.; Jiang, Y.; Luo, D.; Yu, A.; Chen, Z. Layer‐Based Heterostructured Cathodes for Lithium‐Ion and Sodium‐Ion Batteries. Adv Funct Mater 2019, 29, 1808522, doi:10.1002/adfm.201808522.
78. Tian, Y.; Qiu, Y.; Liu, Z.; Wei, X.; Cao, H. LiMnO 2 @rGO Nanocomposites for High‐performance Lithium‐ion Battery Cathodes. Nanotechnology 2021, 32, 015402, doi:10.1088/1361-6528/abb48c.
79. Xi, Y.; Wang, M.; Xu, L.; Kheimeh Sari, H.M.; Li, W.; Hu, J.; Cao, Y.; Chen, L.; Wang, L.; Pu, X.; et al. A New Co-Free Ni-Rich LiNi 0.8 Fe 0.1 Mn 0.1 O 2 Cathode for Low-Cost Li-Ion Batteries. ACS Appl Mater Interfaces 2021, 13, 57341–57349, doi:10.1021/acsami.1c18303.
80. Xu, H.; Cao, G.; Shen, Y.; Yu, Y.; Hu, J.; Wang, Z.; Shao, G. Enabling Argyrodite Sulfides as Superb Solid‐State Electrolyte with Remarkable Interfacial Stability Against Electrodes. ENERGY & ENVIRONMENTAL MATERIALS 2022, 5, 852–864, doi:10.1002/eem2.12282.
81. Li, Y.; Zhang, Y.; Liu, J.; Bei, Y.; Che, J.; Song, Y.; Liu, L.; Ma, J. Inducing Favorable Dual-Substitution Reactivity by Doping Mo6+ and F− to Enhance Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials. Ceram Int 2022, 48, 23016–23023, doi:10.1016/j.ceramint.2022.04.279.
82. Zhang, X.; Jia, H.; Zou, L.; Xu, Y.; Mu, L.; Yang, Z.; Engelhard, M.H.; Kim, J.-M.; Hu, J.; Matthews, B.E.; et al. Electrolyte Regulating toward Stabilization of Cobalt-Free Ultrahigh-Nickel Layered Oxide Cathode in Lithium-Ion Batteries. ACS Energy Lett 2021, 6, 1324–1332, doi:10.1021/acsenergylett.1c00374.
83. Qiu, Q.-Q.; Yuan, S.-S.; Bao, J.; Wang, Q.-C.; Yue, X.-Y.; Li, X.-L.; Wu, X.-J.; Zhou, Y.-N. Suppressing Irreversible Phase Transition and Enhancing Electrochemical Performance of Ni-Rich Layered Cathode LiNi0.9Co0.05Mn0.05O2 by Fluorine Substitution. Journal of Energy Chemistry 2021, 61, 574–581, doi:10.1016/j.jechem.2021.02.012.
84. Cui, Z.; Xie, Q.; Manthiram, A. Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. ACS Appl Mater Interfaces 2021, 13, 15324–15332, doi:10.1021/acsami.1c01824.
Khang Huynh, Md Wahidul Hasan “A brief summary of recent developments of cathode electrode materials in lithium-ion batteries ” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.12-24 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/12-24.pdf
Land-use and Land Cover Change on Clay and Sand Mining: A Spatiotemporal Analysis in Ma-Oya Downstream in Sri Lanka
Mangala Jayarathne, Lal Mervin Dharmasiri, A.M.C. Dissanayake- February 2023 Page No.: 25-34
Mining is one of the main methods of extracting mineral resources. Due to mining potentially decreasing biodiversity, farmland, soil fertility, and contamination from mining waste may add additional stress on environmental quality and ecosystem services. The research was conducted to identify the loss of land and land-use changes due to clay and sand mining in the left Ma-Oya riverbank of the Katana Divisional Secretariat Division (KDSD). Geographically, environmentally, and socio-economically, the Ma-Oya River basin is one of the unique river basins in Sri Lanka. Due to sand and clay mining, the Ma-Oya River basin’s left and right riverbanks have been highly degraded during the last few decades.
The study used the mixed method to identify the land use and land cover changes, especially the GIS and statistical techniques with quantitative and qualitative data. The study revealed that Ma-Oya left bank with significant modifications and land loss due to critical natural resource exploitation. Mainly clay has been excavated up to 835-meter distance from the left Riverbank of Ma-Oya, covering more than 60 hectares. According to the present value of lands in the area, it was the amount of Rs. 2,728,774,720 (27287 Rs/M). It is noted that there are four or five people lose their life annually due to drowning in these water holes. Moreover, the future prediction of land-use change has become a severe issue. Therefore, it is essential to involvement of government institutes to minimize the risk and establish sustainability.
Page(s): 25-34 Date of Publication: 09 March 2023
Mangala Jayarathne
Senior Lecturer, Department of Geography, University of Kelaniya, Sri Lanka
Lal Mervin Dharmasiri
Senior Professor and Carder Chair, Department of Geography, University of Kelaniya, Sri Lanka
A.M.C. Dissanayake
Land use planner, Department of Land-use Policy Planning, Sri Lanka
1. Chaturani, Dilshika, and Mangala Jayarathne. 2019. “Flash Flood in Mountainous Areas ; Special Reference Nalanda Oya Catchment in Sri Lanka .” 3(July).
2. Dan Gavriletea, Marius. 2017. “Environmental Impacts of Sand Exploitation. Analysis of Sand Market.” Sustainability (Switzerland) 9(7).
3. Ding, Xueli, Yunfa Qiao, Timothy Filley, Haiying Wang, Xinxin Lü, Bin Zhang, and Jingkuan Wang. 2017. “Long-Term Changes in Land Use Impact the Accumulation of Microbial Residues in the Particle-Size Fractions of a Mollisol.” Biology and Fertility of Soils 53(3):281–86.
4. Le, Chinh Van, and Jens Raunsø Jensen. 2014. “Individual Lift Irrigation: A Case Study in the Cau Son Irrigation and Drainage Area, Red River Basin, Vietnam.” Paddy and Water Environment 12(1):223–38.
5. Madyise, Tariro. 2013. “Case Studies of Environmental Impacts of Sand Mining And.” (October):1–134.
6. Mi, Jiaxin, Yongjun Yang, Shaoliang Zhang, Shi An, Huping Hou, Yifei Hua, and Fuyao Chen. 2019. “Tracking the Land Use/Land Cover Change in an Area with Underground Mining and Reforestation via Continuous Landsat Classification.” Remote Sensing 11(14).
7. Oltean, I. L., T. Goldan, and C. M. Nistor. 2018. “Prevention and Monitoring Environmental Impact of Open Pit Coal Mining Activities.” Research Journal of Agricultural Science 50(4):259–64.
8. Piyadasa, Ranjana U. K. 2011. “River Sand Mining and Associated Environmental Problems in Sri Lanka.” IAHS-AISH Publication 349(December 2004):148–53.
9. Senanayake, Sumudu, Biswajeet Pradhan, Alfredo Huete, and Jane Brennan. 2020. “Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka.” Remote Sensing 12(9).
10. Sholihah, Qomariyatus, Wahyudi Kuncoro, Sri Wahyuni, Sisilia Puni Suwandi, and Elisa Dwi Feditasari. 2020. “The Analysis of the Causes of Flood Disasters and Their Impacts in the Perspective of Environmental Law.” IOP Conference Series: Earth and Environmental Science 437(1).
11. Zhang, Jing, and Mark Ross. 2015. “Hydrologic Modeling Impacts of Post-Mining Land Use Changes on Streamflow of Peace River, Florida.” Chinese Geographical Science 25(6):728–38.
12. Chaturani, Dilshika, and Mangala Jayarathne. 2019. “Flash Flood in Mountainous Areas ; Special Reference Nalanda Oya Catchment in Sri Lanka .” 3(July).
13. Dan Gavriletea, Marius. 2017. “Environmental Impacts of Sand Exploitation. Analysis of Sand Market.” Sustainability (Switzerland) 9(7).
14. Ding, Xueli, Yunfa Qiao, Timothy Filley, Haiying Wang, Xinxin Lü, Bin Zhang, and Jingkuan Wang. 2017. “Long-Term Changes in Land Use Impact the Accumulation of Microbial Residues in the Particle-Size Fractions of a Mollisol.” Biology and Fertility of Soils 53(3):281–86.
15. Le, Chinh Van, and Jens Raunsø Jensen. 2014. “Individual Lift Irrigation: A Case Study in the Cau Son Irrigation and Drainage Area, Red River Basin, Vietnam.” Paddy and Water Environment 12(1):223–38.
16. Madyise, Tariro. 2013. “Case Studies of Environmental Impacts of Sand Mining And.” (October):1–134.
17. Mi, Jiaxin, Yongjun Yang, Shaoliang Zhang, Shi An, Huping Hou, Yifei Hua, and Fuyao Chen. 2019. “Tracking the Land Use/Land Cover Change in an Area with Underground Mining and Reforestation via Continuous Landsat Classification.” Remote Sensing 11(14).
18. Oltean, I. L., T. Goldan, and C. M. Nistor. 2018. “Prevention and Monitoring Environmental Impact of Open Pit Coal Mining Activities.” Research Journal of Agricultural Science 50(4):259–64.
19. Piyadasa, Ranjana U. K. 2011. “River Sand Mining and Associated Environmental Problems in Sri Lanka.” IAHS-AISH Publication 349(December 2004):148–53.
20. Senanayake, Sumudu, Biswajeet Pradhan, Alfredo Huete, and Jane Brennan. 2020. “Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka.” Remote Sensing 12(9).
21. Sholihah, Qomariyatus, Wahyudi Kuncoro, Sri Wahyuni, Sisilia Puni Suwandi, and Elisa Dwi Feditasari. 2020. “The Analysis of the Causes of Flood Disasters and Their Impacts in the Perspective of Environmental Law.” IOP Conference Series: Earth and Environmental Science 437(1).
22. Zhang, Jing, and Mark Ross. 2015. “Hydrologic Modeling Impacts of Post-Mining Land Use Changes on Streamflow of Peace River, Florida.” Chinese Geographical Science 25(6):728–38.
Mangala Jayarathne, Lal Mervin Dharmasiri, A.M.C. Dissanayake “Land-use and Land Cover Change on Clay and Sand Mining: A Spatiotemporal Analysis in Ma-Oya Downstream in Sri Lanka” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.25-34 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/25-34.pdf
Effect of Black Soldier Fly Larva as a Meal on Proximate Composition and Carcass Quality of African Catfish (Clarias gariepinus)
Valentine Obinna Okpoko, Cordelia Ifeyinwa Ebenebe, John Joseph Okeke, Blessing Gambotei Utor, Maduabuchi Inwele Amobi, Chioma Helen Asolo, Comfort Nneka Okoji, Ebiye Adipere- February 2023 Page No.: 35-42
The need to substitute the scarce and expensive fishmeal with a cheaper alternative has drawn attention to the use of insect protein in feeds due to their abundance and high nutritional value. In this regard the Black soldier fly (Hermetia illucens) stands out due to its dual ability of recycling organic waste materials into useful biomass for feed. This resulted in several studies that assessed the quality of carcass produced by livestock fed with the larva meal. However, very little studies have been carried out on the effect of this larva meal on the carcass quality of the African catfish (Clarias gariepinus). Here, this study showed that the Black soldier fly larva meal can be used to replace fishmeal in the diet of Clarias gariepinus up to 75% to increase the quality of carcass. Four treatment diets of compounded fish feed were formulated to contain Black soldier fly larva meal replacing fishmeal at different inclusion rates of 0%, 50%, 75% and 100%. The values for condition factor recorded from each treatment were above 1, which imply that the fish were in good physiological state. The values of the hepatosomatic indices observed among the treatment diets indicate that feeding Black soldier fly larva meal to Clarias gariepinus had no negative impact on the liver functionality and no excessive hepatic accumulation of fat or carbohydrate as the values were within the normal range (1–2%). The fillet yield was significantly highest for fish fed 75% larva meal. Meanwhile, the productive potential carcass quality was also noticed to have increased with the increasing rate of larva meal inclusion up to 75%. Our results demonstrate that Black soldier fly larva meal can be used to replace fishmeal in the diet of Clarias gariepinus up to 75% to reduce cost of feeding without compromising the quality of carcass produced.
Page(s): 35-42 Date of Publication: 11 March 2023
Valentine Obinna Okpoko
Department of Biology and Forensic Science, Admiralty University of Nigeria, Ibusa/Ogwashi-uku Express Way, Delta State, Nigeria.
Cordelia Ifeyinwa Ebenebe
Department of Animal Science, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
John Joseph Okeke
Department of Zoology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
Blessing Gambotei Utor
Department of Biology and Forensic Science, Admiralty University of Nigeria, Ibusa/Ogwashi-uku Express Way, Delta State, Nigeria.
Maduabuchi Inwele Amobi
Department of Biological Sciences, Federal University of Kashere, Gombe State, Nigeria
Chioma Helen Asolo
Department of Zoology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
Comfort Nneka Okoji
Department of Biology and Forensic Science, Admiralty University of Nigeria, Ibusa/Ogwashi-uku Express Way, Delta State, Nigeria.
Ebiye Adipere
Department of Biology and Forensic Science, Admiralty University of Nigeria, Ibusa/Ogwashi-uku Express Way, Delta State, Nigeria.
1. Okpoko, V. O., Ebenebe, C. I., Ufele, A. N., and Amobi, M. I. (2020). Cocoon formation pupation and adult emergence of african palm weevil (Rhynchophorus phoenicis) reared on six different substrates. Medicine Papers 6(3): 67-73.
2. Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R.; Krogdahl, Å.; Lock, E.J. (2019). Blacksoldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmosalar). Aquaculture, 503: 609–619.
3. Dabbou, S., Gai, F., Biasato, I., Capucchio, M. T., Biasibetti, E., Dezzutto, D., Meneguz, M., Placha, I., Gasco, L., and Schiavone, A. (2018). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol.,
4. Lock, E.R., Arsiwalla, T. and Waagbø, R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutrition 22, 1202– 1213.
5. Ebenebe, C. I., Okpoko, V. O., Ufele, N., and Amobi, M. I. (2017). Survivability, growth performance and nutrient composition of the african palm weevil (Rhynchophorus phoenicis Fabricius) reared on four different substrates. Journal of Bioscience and Biotechnology Discovery 2, 1 – 9.
6. Amobi, M. I., Saleh, A., Okpoko, V. O., and Abdullahi, A. M. (2020). Growth performance of broiler chicken based on grasshopper meal inclusions in feed formulation. The Zoologist 20, 39-43.
7. Makkar, H. P. S., Tran, G., Henze, V., and Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology 197, 1–33.
8. Ebenebe, C. I., and Okpoko, V. O. (2015). Edible insect consumption in the south eastern Nigeria. International Journal of Scientific & Engineering Research 6(6), 1459-1464.
9. Schiavone, A., Dabbou, S., De Marco, M., Cullere, M., Biasato, I., Biasibetti, E., Capucchio, M. T., Bergagna, S., Dezzutto, D., Meneguz, M., Gai, F., Dalle Zotte, A., and Gasco, L. (2018). Black soldier fly (Hermetia illucens L.) larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032-2039.
10. Secci G., Bovera F., Nizza S., and Baronti N. (2018). Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal 12:1–7.
11. Allegretti, G., Schmidt, V., and Talamini, E. (2017). Insects as feed: Species selection and their potential use in Brazilian poultry production. World’s Poultry Science Journal 73: 928–937.
12. Belghit, I., Liland, N.S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å. and Lock, E.-J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72– 81. https://doi.org/10.1016/j.aquaculture.2018.03.016
13. Barroso, F.G., de Haro, C., Sánchez-Muros, M.-J., Venegas, E., Martínez-Sánchez, A. and Pérez-Bañón, C. (2014) The potential of various insect species for use as food for fish. Aquaculture, 422–423: 193– 201. https://doi.org/10.1016/j.aquaculture.2013.12.024
14. Zhou, J., Liu, S., Ji, H., and Yu, H. (2018). Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition 24, 424-433.
15. 15. Katya, K., Borsra, M. Z. S., Ganesan, D., Kuppusamy, G., Herriman, M., Salter, A. and Ali, S. A. (2017). Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. International Aquatic Research, 9: 303-312. https://doi.org/10.1007/s40071-017-0178-x
16. Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M. T., Biasato, I., Biasibetti, E., De Marco, M., Brugiapaglia, A., Zoccarato, I., and Gasco, L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: p. 57
17. Jan, M. and Ahmed, I. (2016). Length weight relationship and condition factor of snow trout, Schizothorax plagiostomus (Heckel, 1838) from Lidder River, Kashmir. International Journal of Fisheries and Aquatic Studies, 4(2), 131-136.
18. Odiko, A. E. and Idogun, O. J. (2016). Carcass quality of some commonly consumed fishes in Nigeria. Nigerian Journal of Agriculture, Food and Environment 12(3), 16-19.
19. Iaconisi, V., Bonelli, A., Pupino, R., Gai, F. and Parisi, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture 484, 197-204.
20. Varga D., Hancz Cs., Horn P., Molnár T. G., and Szabó A. (2013). Environmental factors influencing the slaughter value and flesh quality of the common carp in four typical fish farms in Hungary. Acta Alimentaria 42(4), 495–503.
21. Gebremichael, A., Varga, D., Kiszlinger, H., and Kucska, B. (2022). Fillet yield and flesh quality of common carp (Cyprinus carpio) fed with extruded feed containing black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor). AACL Bioflux, 15(5): 2273-2281.
22. Mohamed, F. A., Khogali, F. A., Mohamed, A. H., Deng, O. O. and Mohammed, A. A. (2016). Body weight characteristics and chemical composition of Nile tilapia (Oreochromis niloticus) collected from three different Sudanese dams. International Journal of Fisheries and Aquatic Studies 4(5): 507–510.
23. St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E. E., Tomberlin, J. K., Newton, L., Sealey,W., Sheppard, C., and Irving, S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquacult. Soc. 38 (2) 309–313, https://doi.org/10.1111/j.1749-7345.2007.00101.x.
24. Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A., Riolo, P., Parisi, G., and Cardinaletti, G. (2018). Partial dietary inclusion of black soldier fly full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish, 15, 519-532. https://doi.org/10.3390/ani11030720
25. Cummins, V. C., Rawles, S. D.,Thompson, K. R., Velasquez, A., Kobayashi, Y., Hager, J., and Webster, C.D. (2017). Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei), Aquaculture, 473: 337–344, https://doi.org/10.1016/j.aquaculture.2017.02.022.
26. Zarantoniello, M., Randazzo, B., Truzzi, C., Giorgini, E., Marcellucci, C., Vargas-Abúndez, J.A., Zimbelli, A., Annibaldi, A., Parisi, G., Tulli, F., Riolo, P. and Olivotto, I. (2019). A six-months study on black soldier fly (Hermetia illucens) based diets in zebrafish. Scientific Reports, 9: 8598. https://doi.org/10.1038/s41598-019-45172-5
27. Adeoye, A. A.; Akegbejo-Samsons, Y., Fawole, F. J., and Davies, S. J. (2020). Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. J. World Aquacult. Soc. 51, 1024-1033.
28. Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., and Zhang, J. (2018). Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrusfulvidraco). Aquaculture Research, 49: 1569–1577.
29. Ronghua L. Yanna, C., Weipeng, Y., Mengjun, L., Guokun, Y., Chaobin, Q., Xiaolin, M. Yanmin, Z., Hong, J., and Guoxing, N. (2020). Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquaculture Reports, 18: 100520. https://doi.org/10.1016/j.aqrep.2020.100520
30. Maina, A. (2020). Growth performance and carcass characteristics of the african catfish (clarias gariepinus) reared on diets containing black soldier fly (hermetia illucens) larvae meal. Thesis for: Master of Science (Animal Nutrition and Management). University of Guelph. DOI:10.13140/RG.2.2.18940.82563
31. National Research Council (NRC) (2011) Nutrient Requirements of Fish and Shrimp.
32. Munguti, J. M., Safina, M., Paul, S. O., Domitila, N. K., Mary, O., Harrison, C., and Erick, O. O. (2014). An overview of current status of Kenyan fish feed industry and feed management practices, challenges and opportunities. Int.I J. Fish. Aqua. Stud., 6: 128-137.
33. AOAC (2010). Official Methods of Analysis of Association of Official Analytical Chemists.18th Edition, Washington, DC.
34. Amobi, M. I., Ebenebe, C. I., Nwobodo, J. C., Ezenwaeya, U., Okereke, N. H. and Okpoko, V. O. (2019). Effects of snail offal meal on performance of broiler chickens. International Journal of Livestock Production. 10(2):43-48.
Valentine Obinna Okpoko, Cordelia Ifeyinwa Ebenebe, John Joseph Okeke, Blessing Gambotei Utor, Maduabuchi Inwele Amobi, Chioma Helen Asolo, Comfort Nneka Okoji, Ebiye Adipere “Effect of Black Soldier Fly Larva as a Meal on Proximate Composition and Carcass Quality of African Catfish (Clarias gariepinus)” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.35-42 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/35-42.pdf
IoT-Enabled Waste Food Tracking and Monitoring for Animal Feed in Urban Centers
Godwin Odozo Ozor, Francis A. Okoye, Everistus Z. Orji- February 2023 Page No.: 43-46
This study aimed to assess the potential of using IoT-enabled waste food tracking and monitoring for animal feed in urban centers. The study was conducted in Enugu Urban, Nigeria, using descriptive statistics to analyze the data collected from a sample of food businesses. The results showed that the use of IoT-enabled waste food tracking and monitoring could significantly impact the collection and distribution of waste food for animal feed, ensuring that waste was efficiently collected for animal feeding. The study found that the median value was 3, the mean was 2.5, and the standard deviation was 1.2. The findings of this study highlight the importance of utilizing technology to improve food waste management practices and contribute to a more sustainable food system. The use of IoT-enabled waste food tracking and monitoring can help to address the challenges of food waste management in urban areas, such as ensuring proper storage and transport of waste and preventing food waste from going to landfill. The results of this study demonstrate the potential of IoT-enabled waste food tracking and monitoring for animal feed in urban centers and the need for continued efforts to reduce food waste and improve food waste management practices.
Page(s): 43-46 Date of Publication: 11 March 2023
Godwin Odozo Ozor
Computer Engineering, Enugu State University of Science and Technology, Nigeria
Francis A. Okoye
Computer Engineering, Enugu State University of Science and Technology, Nigeria
Everistus Z. Orji
Computer Engineering, Enugu State University of Science and Technology, Nigeria
1. Bhatnagar, A., & Shukla, A. (2019). Waste-to-wealth: An IoT-based approach to manage food waste. Journal of Cleaner Production, 208, 686-696.
2. Li, J., Li, Y., Wang, X., & Zhang, J. (2018). Waste food utilization for animal feed: a review. Journal of Cleaner Production, 198, 626-636.
3. Chen, Y., & Chen, Y. (2019). Waste food management and its contribution to circular economy: A review. Waste Management, 80, 355-364.
4. Wang, Q., & Li, J. (2017). Food waste management in China: Status, challenges, and solutions. Renewable and Sustainable Energy Reviews, 68, 1266-1276.
5. Park, J. H., Lee, S. H., & Cho, H. S. (2019). A review of food waste management and its effects on the environment. Waste Management, 92, 86-96.
6. Wang, Z., Chen, X., & Wang, Q. (2019). Development of a smart food waste management system using Internet of Things (IoT) technologies. Waste Management, 92, 180-186.
7. Kim, Y. S., Lee, J. Y., & Kim, Y. J. (2018). IoT-based smart food waste management system for reducing food waste in households. Sustainability, 10(12), 3745.
8. Saha, S., & Bhatnagar, A. (2020). Development of a food waste management system using IoT technologies: A case study. Waste Management, 116, 243-255.
9. Li, J., & Wang, Q. (2018). An IoT-based food waste management system for reducing food waste in households. Waste Management, 74, 447-455.
10. Zhang, J., Li, Y., Li, J., & Wang, X. (2019). Utilization of food waste for animal feed in China: current status and future prospects. Renewable and Sustainable Energy Reviews, 104, 346-356.
11. Li, Y., Li, J., Wang, X., & Zhang, J. (2019). Food waste utilization for animal feed: A review. Renewable and Sustainable Energy Reviews, 107, 218-226.
12. Zhang, J., Li, Y., & Li, J. (2020). Food waste utilization for animal feed in China: A review of the current status and future prospects. Renewable and Sustainable Energy Reviews, 120, 114-123.
13. Wang, Q., & Li, J. (2018). A review of food waste management in China. Renewable and Sustainable Energy Reviews, 92, 523-532.
14. Kim, J. H., Lee, S. H., & Cho, H. S. (2019). A review of food waste management and its effects on the environment. Renewable and Sustainable Energy Reviews, 120, 586-594.
Godwin Odozo Ozor, Francis A. Okoye, Everistus Z. Orji “IoT-Enabled Waste Food Tracking and Monitoring for Animal Feed in Urban Centers ” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.43-46 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/43-46.pdf
Landscape Perception of Urban Greenery in Residential Areas in Enugu Metropolis
Okoyeh, I. I., Efobi, K. O., Irouke, V. M., Odoanyanwu, N. M.- February 2023 Page No.: 47-59
Landscape perception in urban greenery focuses on how people perceive and evaluate spaces and these perception relates to benefits experienced. Natural landscapes are perceived as more visually appealing, more calming and restorative, and more conducive to relaxation and leisure activities. The contrasting urban greenery of Enugu metropolis is a result of complex interplay of residential area densities and social systems and continues to be depleted. This study aimed at assessing landscape perception in urban greenery in residential areas in Enugu metropolis as categorised into high, medium and low densities. This was achieved by determining how local residents value urban greenery and examining local residents preference of urban greenery as a development initiative. A total of 389 respondents in all three densities were interviewed using a structured questionnaire. The results showed that urban greenery received higher residents’ prioritization ranking in low density areas than in medium and high densities. Notwithstanding, most of the surveyed respondents 84% knew of the benefits of trees while 11% thinks it is of no value and as low as 5% are ignorant of it’s benefits. The study recommends that indiscriminate falling of trees by the Enugu Electricity Distribution company should be checkmated, the few available open spaces in high density areas should be procured for afforestation, baseline data on urban greenery at community level should be captured.
Page(s): 47-59 Date of Publication: 14 March 2023
Okoyeh, I. I.
Department of Architecture, Nnamdi Azikiwe University, Awka, Nigeria
Efobi, K. O.
Department of Urban and Regional Planning, University of Nigeria, Enugu, Nigeria
Irouke, V. M.
Department of Architecture, Nnamdi Azikiwe University, Awka, Nigeria
Odoanyanwu, N. M.
Department of Architecture, Nnamdi Azikiwe University, Awka, Nigeria
1. Acar, C., & Sakıcı, Ç. (2008). Assessing landscape perception of urban rocky habitats. Building and Environment, 43(6), 1153-1170.
2. Carter, E.J. (1992). ‘Tree cultivation on private land in the middle hills of Nepal: lessons from some villagers of Dolakha District’ Mountain Research and Development 12 (3):241–255.
3. Clark, J. Matheny, N. Cross, G. and Wake, V. (1997) A model of urban forest sustainability Journal of Arboriculture 23(1): 997 23(1), 17-30.
4. Gil, C. (2009) Eco-filter: Introducing New Lungs in the city of Beijing, University of South Florida. Thesis work from Architecture and Community Design
5. Larsen, L. and Harlan. (2006). Desert dreamscapes: residential landscape preference and behavior. Landscape and Urban Planning
6. McPherson, E. and Simpson, J.R. (2006). Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry & Urban Greening 2; 073-086.
7. Miller, R. W. (1988). Urban Forestry Planning and Managing Urban Greenspaces, Prentice Hall, New Jersey, USA.
8. Mottet, A. et al. (2006). Agricultural land-use change and its drivers in mountain landscapes: a case study in the Pyrenees. Agriculture Ecosystems & Environment
9. Nowak, D et al. (2001). People and Trees: Assessing the US Urban Forest Resource. Journal of Forestry. 99, 37-42
10. Özgüner, H. et al. (2006). Public attitudes towards naturalistic versus designed landscapes in the city of Sheffield (UK). Landscape and Urban Planning
11. Park J.J. et al. (2011). The natural outdoors and health: assessing the value and potential contribution of secondary public data sets in the UK to current and future knowledge. Health & Place.
12. Stow et al. (2010). Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality
13. Van den Berg, A. E., & Koole, S. L. (2006). New wilderness in the Netherlands: An investigation of visual preferences for nature development landscapes. Landscape and Urban Planning, 78(4), 362-372.
14. Van den Berg, A.E. et al. (2010). Green space as a buffer between stressful life events and health. Social Science & Medicine
15. Van den Berg, A. E., van Winsum-Westra, M., De Vries, S., & Van Dillen, S. M. (2010). Allotment gardening and health: a comparative survey among allotment gardeners and their neighbors without an allotment. Environmental Health, 9(1), 1-12.
16. Velarde, M.D. et al. (2007). Health effects of viewing landscapes–landscape types in environmental psychology. Urban Forestry & Urban Greening
17. Woodall, C.W. Nowak, D.J. Liknes, G.C. Westfall, J.A. (2010) Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States.
18. Zhang et al, (2013). Landscape perception and recreation in urban green space in Fuyang, Hangzhou, China. Elsevier; Urban Forestry and Urban Greening12 (2013) 44-52.
19. Zhang, W., Yang, J., Ma, L., & Huang, C. (2015). Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban Forestry & Urban Greening, 14(4), 851-857.
20. Zheng, B. et al. (2011). Preference to home landscape: wildness or neatness? Landscape and Urban Planning
Okoyeh, I. I., Efobi, K. O., Irouke, V. M., Odoanyanwu, N. M. “Landscape Perception of Urban Greenery in Residential Areas in Enugu Metropolis” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.47-59 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/47-59.pdf
Influence of ring traveller number and their appropriate selection for the different count in compact card hosiery yarn process
Anupam Deb Nath, Kazi Naim Hossain- February 2023 Page No.: 60-67
Traveller is a small portion among all the parts of ring frame machine but significant part in ring frame in a short staple spinning mill. Traveller has a great impact on yarn quality parameters specially hairiness. The traveller imparts twist to the yarn and enables winding of the yarn on the cop. Yarn quality varies due to different traveller number. Several investigations have been carried out on the influence of the ring traveller of Bracker brand. In some studies, it was observed that yarn properties( U%, CVm%, hariness%, IPI and end breakage) decreased as the weight of the traveller increased, whereas in some others it was stated that as the traveller weight is decreased as yarn properties increased. Therefore, specific number of traveller should be used for a particular count of yarn. And it is important for the technologist to understand this and act on them to optimised the yarn production and quality.
Page(s): 60-67 Date of Publication: 14 March 2023
Anupam Deb Nath
Department of Quality Assurance Department, Dabiruddin spinning mills Ltd., Trishal, Bangladesh
Kazi Naim Hossain
Department of Quality Assurance Department, Dabiruddin spinning mills Ltd., Trishal, Bangladesh
1. R. H. G. Feng Lei Zhou, “Manufacturing technologies of polymeric nanofibres and nanofibre yarns,” Polymer International, vol. 57, no. 6, pp. 837-845, 2008.
2. Z.-X. Tang, X. Wang and B. Fraser, “Distribution of Power Requirements During Yarn Winding in Ring Spinning,” Textile research journal, vol. 74, no. 8, pp. 735-741, 2019.
3. C. Lawrence, Overview of developments in yarn spinning technology, University of Leeds, UK: Woodhead Publishing Series in Textiles, 2014, pp. 3-41.
4. H. R. Jamburl, “Effect of Machine Variables on Rotor Yarn Properties,” Journal of the Textile Association ·, pp. 377-383, 2018.
5. Akshay Kumar, “Compact Spinning: A Critical Review,” ASME 2003 International Mechanical Engineering Congress and Exposition, pp. 59-68, 2008.
6. N. N. a. R. Niijjaawan, Modern Approach to Maintenance in Spinning, India: Woodhead Publishing India Pvt. Ltd., 2010, p. 408.
7. T. Pattabhiram, Essential Elements Of Practical Cotton Spinning, New Delhi: Somaiya Publications Pvt. Ltd., 1997.
8. E. Oxtoby, Spun Yarn Technology, Conventional frame spinning machines.: England by Anchor-Brendon Ltd, Tiptree Essex, 1987, p. 121.
9. W. Klein, Manual Of Textile Technology, 2016-2017 ed., England: The Textile Institute. ISBN 0900739916, 2016-2017, pp. 202-203.
10. R. +. F. G. u. C. KG, Technical manual of “Reiners+Frust, Rings and Travellers”, Germany.
Anupam Deb Nath, Kazi Naim Hossain “Influence of ring traveller number and their appropriate selection for the different count in compact card hosiery yarn process ” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.60-67 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/60-67.pdf
Evaluation of Grain Losses as Affected by Combine Forward Speed
R.Bawatharani and D.N.Jayatissa- February 2023 Page No.: 68-72
Header losses were evaluated at forward speeds 4.24, 2.95 and 2.04 km/h in combine A and 3.81, 2.73 and 1.9 km/h in combine B. Header grain losses initially decreased with an increasing forward speed from 2.04 km/h to 2.95 km/h but increased with an increase of the speed from 2.95 to 4.24 km/h in combine A. Header grain losses were also increased due to the increase of the speed from 2.73 to 3.81 km/h from combine B. Forward speed of 2.95 km/h in combine A and 2.73 km/h in combine B resulted in lower header losses of 38.7 and 45.8 kg/ha, respectively. The increasing forward speed of combine A from 2.01 to 4.24 km/h increased the effective field capacity from 0.245 to 0.38 ha/h. Similarly, in combine B forward speeds from 1.9 to 3.81 km/h increased effective field capacity from 0.175 to 0.197 ha/h. Increasing forward speed in combine A from 2.01 to 4.24 km/h decreased the field efficiency from 60.9% to 49.3%, whereas, increasing forward speed from 1.9 to 3.81 km/h decreased the field efficiency from 50.8% to 30.6% in combine B.
Page(s): 68-72 Date of Publication: 18 March 2023
R.Bawatharani
Department of Agricultural Engineering, Faculty of Agriculture, Eastern University, SRI LANKA
D.N.Jayatissa
Department of Agricultural Engineering, Faculty of Agriculture, Eastern University, SRI LANKA
1. Al-Kazaz, K.M.A. Impact of harvester speed on the losses proportion of the mechanical harvest (2013). Iraqi Journal of Agricultural Science, 2013; Volume 21. (in Arabic). In: The Iraqi Journal of Agricultural Sciences. (1990) – 44(2): 264 – 273.
2. Al-Tahhan,Y.H., Saeed, S.M., and Abdul- Jabbar, S (2013). Impact of forward speeds of the harvester in the amount of losses in the wheat in the Al-Jazeera region. Nineveh, Mesopotamia Journal of Agriculture (in Arabic). In: The Iraqi Journal of Agricultural Sciences 1990. 44(2): 264 – 273.
3. ASAE. ASAE Standards–44th Edition. (Standards Engineering Practices Data). The Society for Engineering in Agricultural, Food and Biological Systems. 1997; U.S.A.
4. Bora, G.C., and Hansen, G.K. Low cost mechanical aid for rice harvesting. Journal of Applied Sciences. 2007; 7(23): 3815 – 3818.
5. Chen, D., Kang, F., Zhu, Q. and Wang, S. Study on combine harvester speed control based on optimum threshing power consumption mode. Applied Mechanics and Materials. 2012; 1911-1914.
6. Fouad, H.A., Tayel, S.A., Ei-Hadad, Z. and Abdel-Mawla, H. Performance of two different types of combines in harvesting rice in Egypt. Agricultural Mechanization in Asia, Africa and Latin America (AMA). 1990; 21(3): 17-22.
7. Hassan, G.I. and Larson, D.L. Combine Capacity and Costs. Transactions of the ASAE. 1978; 6: 1068-1070.8.
8. Helmy, M.A., Gomaa, S.M., Hindey, F.I. and Abushieshaa, R.R.. Comparative study on two different rice combine harvesting machine. Misr. J. Agric. Eng. 1995; 12(2): 479-495.
9. Mohammed, I.A. and Al-Kazaz, K.M. Estimate automated harvest losses of wheat using Laverda 3500 harvester in the region of Suwayra, Iraq Journal of Agriculture (special issue). 2000; 5 (2): 151-163. (in Arabic). In: The Iraqi Journal of Agricultural Sciences. 2013; 44(2): 264 – 273.
10. Nadeem Amjad. Field performance evaluation of rice reaper. In: Agricultural mechanization in Asia, Africa and Latin America, 1983; 14: 35-40.
11. Ramadan, G.M. Effect of forward speeds for two types of combines on quantity loss of wheat. Journal of Tikrit University for Agriculture Sciences (JTUAS). 2010; 10(1): 247-254. (In Arabic). In: The Iraqi Journal of Agricultural Sciences. 2013; 44(2): 264 – 273.
12. Randal, K.T. and Mark, D.S. Harvesting Short, Thin Office. Kansas State University. Manhattan. USA. 2002.
13. RNAM Test code and Procedures for Agricultural Machinery. Technical Series 12, Regional Network for Agricultural machinery (RNAM) of the United Nations. Philipines. 1995; 207-225.
14. Smith, H.P. and Wilkes, L.H. Farm Machinery and Equipment – 6th Edition. Mc Grew-Hill Book Company, 1976; New York, U.S.A.
15. Wahby, M.F. Studies on mechanization of planting and harvesting in wheat and barley in Tahrir province. 1976; M.Sc. Thesis Ag. Eng. Dept. Faculty of Agric. Al-Azhar University Egypt.
R.Bawatharani and D.N.Jayatissa “Evaluation of Grain Losses as Affected by Combine Forward Speed” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.68-72 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/68-72.pdf
Relationship of Anxiety with Adherence to Medication in People with Diabetes Mellitus
Sri Andala, Nanda Fitria, Novia Rizana, Abdul Gani, Muaamar Fikly Hasibuan- February 2023 Page No.: 73-78
Diabetes mellitus is a disease that requires long-term therapy and causes complications in various organs of the body. To accelerate healing requires high adherence to taking medications by patients with education, which is an important factor to prevent patient anxiety in taking medications regularly. This study aimed to determine patients’ anxiety about adherence to taking patients’ diabetes mellitus medication. A cross-sectional study was conducted on 107 patients with accidental diabetes mellitus. The results of the study found that the anxiety of people with diabetes mellitus was in the mild category of 46 respondents (43.0%) and adherence to taking medicines for people with diabetes mellitus was in the low category of 46 respondents (43.0%). The results of statistical tests showed that the p-value was = 0.000<0.05, there was a relationship between anxiety and adherence to taking medications in people with diabetes mellitus. It is hoped that the public health center will be able to provide education about medication adherence to prevent anxiety about the treatment of diabetes mellitus.
Page(s): 73-78 Date of Publication: 18 March 2023
Sri Andala
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Nanda Fitria
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Novia Rizana
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Muaamar Fikly Hasibuan
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
1. Andala, S., Hermansyah, & Mudatsir. (2016). Tugas Kesehatan Keluarga Mengenal Diet Hipertensi pada Lansia. Jurnal Ilmu Keperawatan, 4(2). https://jurnal.unsyiah.ac.id/JIK/article/view/5292
2. Basu, S., Yoffe, P., Hills, N., & Lustig, R. H. (2013). The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057873
3. Bulu, A., Wahyuni, T. D., & Sutriningsih, A. (2019). Hubungan Antara Tingkat Kepatuhan Minum Obat Dengan Kadar Gula Darah Pada Pasien Diabetes Melitus Tipe II. Ilmiah Keperawatan, 4(1), 181–189.
4. IDF. (2021). IDF Diabetes Atlas 10th edition.
5. Louisiana Department Of Health Bureau. (n.d.). Louisiana Medicaid Managed Care Organization Model Contract. Louisiana Department of Health Bureau Services Financing.
6. Nazriati, E., Pratiwi, D., & Restuastuti, T. (2018). ARTIKEL PENELITIAN Pengetahuan pasien diabetes melitus tipe 2 dan hubungannya dengan kepatuhan minum obat di Puskesmas Mandau Kabupaten Bengkalis. 41(2), 59–68. https://doi.org/10.25077/mka.v41.i2.p59-68.2018
7. Raharjo, S. (2010). Pengaruh Hemodialisis Terhadap Kadar Tnf-Α Dan Prokalsitonin Pada. Universitas Sebelas Maret (UNS) Surakarta.
8. RISKESDAS. (2018). Laporan Provinsi Aceh RISKESDAS 2018. Badan penelitian dan pengembangan kesehatan 2019.
9. Sari, T., Sri Andala, S. A., Mursal, M., Rizana, N., Suryawati, I., Fitria, N., & Haytami, A. G. (2022). Factors Contributing To Dietary Disobedience in Patients with Type 2 Diabetes at Mutiara Timur Public Health Centre, Aceh. EAS Journal of Nursing and Midwifery, 4(3), 65–72. https://doi.org/10.36349/easjnm.2022.v04i03.001
10. Siregar, L. B., & Hidajat, L. L. (2017). Faktor Yang Berperan Terhadap Depresi, Kecemasan Dan Stres Pada Penderita Diabetes Melitus Tipe 2: Studi Kasus Puskesmas Kecamatan Gambir Jakarta Pusat. Jurnal Ilmiah Psikologi MANASA, 6(1), 15–22.
11. Sugawara, E., & Nikaido, H. (2014). Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257. https://doi.org/10.1128/AAC.03728-14
12. Syam, A., & Amri. (2017). Pengaruh Kepercayaan Diri (Self Confidence) Berbasis Kaderisasi Imm Terhadap Prestasi Belajar Mahasiswa (Studi Kasus Di Program Studi Pendidikan Biologi Fakultas Keguruan Dan Ilmu Pendidikan Universitas Muhammadiyah Parepare). Jurnal Biotek, 5(1), 87–102. https://doi.org/https://doi.org/10.24252/jb.v5i1.3448
Sri Andala, Nanda Fitria, Novia Rizana, Abdul Gani, Muaamar Fikly Hasibuan “Relationship of Anxiety with Adherence to Medication in People with Diabetes Mellitus” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.73-78 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/73-78.pdf
Commentary on the Thermodynamics of a Super-alloy System (Al-Ni-Cr) Using the Thermocalc Databases
Olatunde David Akanbi- February 2023 Page No.: 79-87
The present study aims to comprehend the thermodynamics of the Al-Ni-Cr superalloy system utilizing the latest Thermocalc 2022b databases. Thermocalc is a software that has a large database which has become vast over the years. The thermodynamic behavior and stability of the system were examined under varying conditions, including temperature and composition. The findings of this study provide crucial insight into the phase behavior and stability of the Al-Ni-Cr superalloy system, which can inform the optimization of its properties and performance for various industrial applications, compared to previous studies and research. The results of this study contribute to a deeper understanding of the thermodynamics of superalloy systems and can be of great benefit to the materials science and engineering communities. The databases used for the binary systems were NIDEMO v2.0 (Nickel Demo database v2.0, including Ni, Cr, and Al – a subset of TCNI) and TCBIN V1.1 (TC Binary Solutions Database, Version 1.0), while for the ternary systems, NIDEMO V2.0 and PURE 5SGTE V5.1 (Pure Elements – Unary Database, Scientific Group Thermodata Europe) were used. The results here demonstrate the great benefits of studying the thermodynamics of this alloy through available database systems and comparing the results with experimental studies.
Page(s): 79-87 Date of Publication: 18 March 2023
Olatunde David Akanbi
Department of Material Science and Engineering, Case Western Reserve University
1. “The 1200 degree Celcius Isothermal Sections of the Ni-Al-Cr and the Ni-Al-Mo Ternary Phase Diagrams,” n.d.
2. Akanbi, Olatunde & Abegunde, Omolayo. (2021). Design and Implementation of Mobile Information System for Federal Road Safety Corps (FRSC) of Nigeria. International Journal of Sensor Networks and Data Communications. 9.1. 8. 10.37421/2090-4886.2020.9.169.
3. Akanbi, Olatunde & Faloni, Taiwo & Olaniyi, Sunday. (2022). Prediction of Wine Quality: Comparing Machine Learning Models in R Programming. International Journal of Latest Technology in Engineering, Management & Applied Science. 11. 10.51583/IJLTEMAS.2022.11901.
4. Cios, Grzegorz & Bała, Piotr & Stępień, M. & Górecki, Kamil. (2015). Microstructure of cast Ni-Cr-Al-C alloy. Archives of Metallurgy and Materials. 60. 10.1515/amm-2015-0022.
5. Huang, W., and Y.A. Chang. “Thermodynamic Properties of the Ni–Al–Cr System.” Intermetallics 7, no. 8 (August 1999): 863–74. https://doi.org/10.1016/S0966-9795(98)00138-1.
6. Mahdouk, K., Gachon, JC. Thermodynamic investigation of the aluminum-chromium system. JPE 21, 157 (2000). https://doi.org/10.1361/105497100770340219
7. Mahdouk, Kamal, and Jean-Claude Gachon. “Thermodynamic Investigation of the Aluminum-Chromium System.” Journal of Phase Equilibria 21, no. 2 (March 2000): 157–66. https://doi.org/10.1361/105497100770340219.
8. Mueller, Erik M. “Thermodynamic Modeling and Experimental Analysis of Oxidation/ Sulfidation of Ni-Cr-Al Model Alloy Coatings,” n.d.
9. N.C. Oforka, B.B. Argent, Thermodynamics of Ni-Cr-Al alloys, Journal of the Less Common Metals, Volume 114, Issue 1, 1985, Pages 97-109, ISSN 0022-5088,https://doi.org/10.1016/0022-5088(85)90394-7.
10. Okamoto, H.. (2004). Al-Ni (aluminum-nickel). Journal of Phase Equilibria and Diffusion. 25. 394-394. 10.1007/s11669-004-0163-0.
11. P.Turchi, L.Kaufman, Z.-K.Liu, CALPHAD , 2006 Modeling of Ni-Cr-Mo based alloys:Part I – Phase stability,, 30 (2006) 70-87.
12. Raghavan, V. Al-Cr-Ni (Aluminum-Chromium-Nickel). J Phs Eqil and Diff 29, 175 (2008). https://doi.org/10.1007/s11669-008-9254-7
13. Thermo-Calc Software general-alloys-and-pure-substances/ PURE 5SGTE V5.1.), https://thermocalc.com/products/databases/general-alloys-and-pure-substances/ (accessed 12 December 2022)
14. Thermo-Calc Software nickel-based-alloys/ NIDEMO v2.0,
https://thermocalc.com/products/databases/nickel-based-alloys/ (accessed 12 December 2022)
15. Thermo-Calc Software nickel-based-alloys/ TCBIN V1.1,
https://thermocalc.com/products/databases/nickel-based-alloys/ (accessed 12 December 2022)
Olatunde David Akanbi “Commentary on the Thermodynamics of a Super-alloy System (Al-Ni-Cr) Using the Thermocalc Databases” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.79-87 February 2023 DOI: https://dx.doi.org/10.51584/IJRIAS.2023.8201
Relationship of Self Efficacy with Foot Care Behavior in Diabetes Mellitus Patients
Novia Rizana, Sri Andala, Nanda Fitria, Trisna Sari, Deva Anggraina- February 2023 Page No.: 88-95
One of the main steps in saving the feet of diabetics is to take preventive measures in the form of foot care. Self-efficacy is one of the factors that can support the success of foot care in diabetics. This study aims to determine the relationship between self-efficacy and foot care behavior in patients with diabetes mellitus. The research method is quantitative with a cross-sectional approach. The sampling technique in this study is purposive sampling with a sample of 110 respondents. Data was collected using the Foot Care Confident Scale (FCCS) and Nottingham Assessment of Functional Footcare (NAFF) questionnaires. Data analysis in this study using the chi-square test. The results showed that 67 respondents (60.9%) had high self-efficacy and 43 respondents (39.1%) had low self-efficacy, 59 respondents (53.6%) had good foot care behavior, and 51 respondents (46.4%) had poor foot care behavior. The results of the chi-square test obtained a P-value of 0.000 < α = 0.05, which means that there is a relationship between self-efficacy and foot care behavior in patients with diabetes mellitus. It can be concluded that there is a positive relationship between self-efficacy and foot care behavior in diabetes mellitus patients at the Gandapura Public Health Center, Bireuen Regency. It is recommended that health workers can provide health education about foot care regularly in order to increase self-efficacy in people with diabetes mellitus
Page(s): 88-95 Date of Publication: 24 March 2023
Novia Rizana
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Sri Andala
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Nanda Fitria
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Trisna Sari
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Deva Anggraina
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
1. Akiko, T., & Annisa, N. (2020). Hubungan self efficacy dengan kepatuhan manajemen diri pada penderita diabetes mellitus tipe 2: literature review naskah publikasi
2. Andala, S. (2015). Tugas kesehatan keluarga mengenal diet hipertensi pada lansia. Jurnal Ilmu Keperawatan, 4(2), 91–99. https://jurnal.usk.ac.id/JIK/article/viewFile/5292/4435
3. Andini, S. A., Efendi, F., & Suprajitno. (2021). hubungan self efficacy dengan perilaku dan ketepatan tindakan perawatan kaki mandiri pada pasien rawat jalan dengan diabetes melitus. 12(6), 17-20. http://www.forikesejournal.com/index.php/SF/article/view/955
4. Damayanti, S. (2017). Efektivitas (Self-Efficacy Enhancement Intervention Program (SEEIP) Terhadap Efikasi Diri Manajemen Diabetes Mellitus Tipe 2. Jurnal Keperawatan Respati Yogyakarta, 4(2), 148–153
5. Dinas Kesehatan Aceh. (2020). Profil Kesehatan Aceh
6. Fajriani, M., & Muflihatin, S. K. (2021). Hubungan Efikasi Diri dengan Manajemen Diri pada Penderita DM Tipe II di Wilayah Kerja Puskesmas Palaran Kota Samarinda. Borneo Student Research, 2(2), 994–1001
7. Huda, N., Sukartini, T., & Pratiwi, N. W. (2019). The Impact of Self Efficacy on the Foot Care Behavior of Type 2 Diabetes Mellitus Patients in Indonesia. Jurnal Ners, 14(2), 181. https://doi.org/10.20473/jn.v14i2.16741
8. IDF. (2021). IDF Diabetes Atlas 10th edition. https://diabetesatlas.org/
9. Infodatin. (2020). Pusat Data dan Informasi Kementerian Kesehatan RI (Tetap Produktif, Cegah, dan Atasi Diabetes Melitus). Jakarta: Kemenkes RI
10. Kamaru Z. N. H., Mohd S. N. S., & Hussein S. Z. (2018). Knowledge and practice of foot care among diabetic elderly in UKM Medical Centre (UKMMC). The Malaysian Journal of Nursing, 9(3), 6–12.
11. Lissa, L., Ratnasari , A., & Luzyawati, L. . (2018). Uji Efektivitas Serbuk Biji Duwet (Syzigiumcumini) Sebagai Obat Alternatif Luka Diabetes Mellitus. Gema Wiralodra, 9(1), 43–51. https://doi.org/10.31943/gemawiralodra.v9i1.60
12. Lukitasari, D. R., Kristiyawati, S. puguh, & Riani, S. (2021). Hubungan Efikasi diri dan Motivasi diri dengan Self care Management Pasien Diabetes Melitus di Puskesmas Toroh II. Seminar Nasional UNIMUS, 4, 1197–1209.
13. Mambang Sari, C. W., Lestari, T., & Pebrianti, S. (2021). Gambaran perilaku perawatan kaki dan faktor-faktor yang mempengaruhi perawatan kaki pada penderita diabetes mellitus di Garut.
14. Mufidhah, M. (2019). Gambaran perilaku perawatan kaki pada penderita diabetes melitus di puskesmas ungaran. Thesis.
15. Munir, N. W., & Solissa, M. D. (2021). Hubungan Self-Efficacy Dengan Self Care Pada Pasien Diabetes Melitus. Jurnal Keperawatan Widya Gantari Indonesia, 5 (1), 9. https://doi.org/10.52020/jkwgi.v5i1.1972
16. Mutiudin, A. I., Mulyana, H., Wahyudi, D., & Gusdiana, E. (2022). Hubungan Efikasi Diri Dan Dukungan Keluarga Dengan Perilaku Perawatan Kaki Pada Penderita Diabetes Tipe 2. Jurnal Ilmu Keperawatan Dan Kebidanan, 13(2), 512–521.
17. Ningrum, T. P., Al Fatih, H., & Yuliyanti, N. T. (2021). Hubungan Tingkat Pengetahuan Dengan Perilaku Perawatan Kaki Pada Pasien Diabetes Melitus Tipe Ii. Jurnal Keperawatan BSI, 9(2), 166–177
18. Nurdin, F. (2021). Persepsi Penyakit dan Perawatan Diri dengan Kualitas Hidup Diabetes Mellitus Type 2. Jurnal Keperawatan Silampari, 4 (2), 566–575. https://doi.org/10.31539/jks.v4i2.1931
19. PERKENI. (2021). Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021. Perkumpulan Endokrinologi Indonesia.
20. Pramesthi, I. R., & Purwanti, O. S. (2020). Hubungan Pengetahuan Pengelolaan Diabetes Melitus Dengan Efikasi Diri Pada Penyandang Diabetes Melitus Tipe II. Prosiding Seminar Nasional Keperawatan Universitas Muhammadiyah Surakarta, 1(1), 46–55.
21. Rediningsih, D. R., Lestari, I. P., & Waluyo, N. (2022). Faktor Risiko Kejadian Diabetes Melitus Tipe II Di Desa Kemambang. Pro Health Jurnal Ilmiah Kesehatan, 4(2), 231–234.
22. RISKESDAS. (2018). Laporan Provinsi Aceh RISKESDAS 2018. Badan penelitian dan pengembangan kesehatan.
23. Sa’adah, N. (2016). Hubungan Keyakinan Kemampuan Diri (self-efficacy) terhadap Perilaku Perawatan Kaki pada Pasien Diabetes Melitus. Thesis
24. Sari, N. N., & Herlina, H. (2018). Faktor–Faktor yang Mempengaruhi Kemandirian Merawat Kaki Pada Pasien Diabetes Mellitus Tipe II. Indonesian Journal of Nursing Research (IJNR), 1(2). https://doi.org/10.35473/ijnr.v1i2.176
25. Sasombo, A., Katuuk, mario E., & Bidjuni, H. (2021). hubungan self care dengan komplikasi diabetes melitus tipe 2 di klinik husada sario manado. Jurnal Keperawatan Indonesia, 9(2), 54–62
26. Ahmad Sharoni SK, Abdul Rahman H, Minhat HS, Shariff-Ghazali S, Azman Ong MH (2018) The effects of self-efficacy enhancing program on foot self-care behaviour of older adults with diabetes: A randomised controlled trial in elderly care facility, Peninsular Malaysia. PLoS ONE 13(3): e0192417. https://doi.org/10.1371/journal.pone.0192417
27. Srimiyati, S. (2018). Pengetahuan pencegahan kaki diabetik penderita diabetes melitus berpengaruh terhadap perawatan kaki. Medisains, 16(2), 76. https://doi.org/10.30595/medisains.v16i2.2721
28. Susanti, D., Sukarni, & Pramana, Y. (2020). Hubungan Antara Efikasi Diri Dengan Perawatan Mandiri Kaki Pada Pasien Diabetes Melitus Di Poli Penyakit Dalam RSUD Sultan Syarif Mohamad Alkadrie Pontianak. Tanjungpura Journal of Nursing Practice and Education, 2(1).
29. Susilawati, E., Hesi, R. P. P., & A Soerawidjaja, R. (2021). Hubungan Efikasi Diri terhadap Kepatuhan Perawatan Kaki Diabetes Melitus pada Masa Pandemi. Faletehan Health Journal, 8(03), 152–159. https://doi.org/10.33746/fhj.v8i03.295
30. Triandhini, R. I. N. . R., Agustina, V., & Siabila, Y. G. (2022). Faktor-faktor yang Mempengaruhi Kadar Gula Darah Pasien Diabetes Melitus Tipe 2 di RSU Sinar Kasih Gereja Kristen Sulawesi Tengah Tentena. Jurnal Keperawatan Muhammadiyah, 7(1), 3–6.
31. Trisnadewi, N. W., Oktaviani, N. P. W., & Adiputra, I. M. S. (2022). Pengaruh Edukasi GERGASI (Gerakan Mencegah Komplikasi) DM Terhadap Perilaku Perawatan Kaki dan Senam Kaki Pada Pasien DM Tipe 2. Jurnal Keperawatan, 14, 1–10.
32. Trisna Sari, Sri Andala, Mursal, Novia Rizana, Ida Suryawati, Nanda Fitria, Abdul Gani Haytami. (2022). Factors Contributing To Dietary Disobedience in Patients with Type 2 Diabetes at Mutiara Timur Public Health Centre, Aceh. EAS Journal of Nursing and Midwifery, 4(3), 65–72. https://doi.org/10.36349/easjnm.2022.v04i03.001
33. Wulandari, N. A. (2021). Hubungan Pengetahuan Pasien Diabetes Mellitus Tipe Ii Dengan Praktik Perawatan Kaki Dalam Mencegah Luka Di Wilayah Kelurahan Cengkareng. Jurnal Keperawatan Muhammadiyah Bengkulu, 9(1), 1–10. https://doi.org/10.36085/jkmb.v9i1.1483
Novia Rizana, Sri Andala, Nanda Fitria, Trisna Sari, Deva Anggraina “Relationship of Self Efficacy with Foot Care Behavior in Diabetes Mellitus Patients” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.88-95 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/88-95.pdf
Effect of Diabetes Self-Management Education on the Prevention of Diabetic Foot Injuries
Nanda Fitria, Novia Rizana, Sri Andala, Mursal, Dalillah Afifah- February 2023 Page No.: 96-100
Diabetics are at high risk of developing chronic disease problems such as diabetic foot injuries. Diabetic foot injuries can be prevented if diabetics have good knowledge so that they are able to carry out diabetic foot care. The provision of DSME can facilitate the knowledge and ability of diabetes mellitus clients to carry out self-care. This study aims to analyze the effect of DSME on the prevention of diabetic foot injuries. The method used is a quasi-experiment with one group pre-test post-test design. Data collection uses research instruments in the form of questionnaires. The study sample used was 55 people with a purposive sampling technique. The data analysis technique used is the marginal homoegenity test. The results showed that there was an effect of DSME on the prevention of diabetic foot injuries. It is hoped that the Center for Public Health can make DSME a regular health promotion program to improve the self-care ability of type 2 diabetes mellitus clients while preventing complications from diabetic foot injuries.
Page(s): 96-100 Date of Publication: 24 March 2023
Nanda Fitria
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Novia Rizana
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Sri Andala
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Mursal
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
Dalillah Afifah
STIKes Muhammadiyah Lhokseumawe, Aceh, Indonesia
1. Adiewere, P., Gillis, R. B., Imran Jiwani, S., Meal, A., Shaw, I., & Adams, G. G. (2018). A systematic review and meta-analysis of patient education in preventing and reducing the incidence or recurrence of adult diabetes foot ulcers (DFU). Heliyon, 4(5), e00614. https://doi.org/10.1016/j.heliyon.2018.e00614.
2. Akbar, Y., Mursal, Hayatun, T., & Rizana, N. (2021). Tingkat kualitas hidup pasien luka kaki diabetik. Jurnal Keperawatan, 19(2), 55–65.
3. Aminah, S., Amelia, K. R., Rianto, B., & Safitri, V. D. (2022). Pengaruh Edukasi Self Management Diabetes (DSME) Dengan Media Booklet Terhadap Kepatuhan Diet Pasien DM Tipe 2 Di Puskesmas Cimahi Selatan. Malahayati Nursing Journal, 5(2), 432–442. https://doi.org/10.33024/mnj.v5i2.5912.
4. Bakker, K., Apelqvist, J., Lipsky, B. A., Van Netten, J. J., & Schaper, N. C. (2016). The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes/Metabolism Research and Reviews, 32(30), 2–6. https://doi.org/10.1002/dmrr.2694.
5. Diabetes Atlas, I. (2019). INTERNATIONAL DIABETES FEDERATION. The Lancet, 266(6881), 134–137. https://doi.org/10.1016/S0140-6736(55)92135-8.
6. Eben, D., & Astrid, M. (2019). Perbedaan Tingkat Pengetahuan Dan Sikap Sebelum Dan Sesudah Pemberian Diabetes Self Management Education (DSME) Pada Pasien Diabetes Melitus Di Puskesmas Matraman Jakarta Timur. Journal Health & Science : Gorontalo Journal Health and Science Community, 3(1), 1–7. https://doi.org/10.35971/gojhes.v1i1.2128.
7. Hendrawijaya (2010). Psikologi Keperawatan. Jakarta: EGC.
8. Jannah, N., & Uprianingsih, A. (2020). Optimalisasi Diabetes Self Management Education (Dsme) Dengan Dukungan Keluarga Terhadap Pencegahan Kaki Diabetes Di Kota Bima. Jurnal Ilmiah PANNMED (Pharmacist, Analyst, Nurse, Nutrition, Midwivery, Environment, Dentist), 15(3), 410–414. https://doi.org/10.36911/pannmed.v15i3.801
9. Jones, N. J., & Harding, K. (2015). 2015 International Working Group on the Diabetic Foot Guidance on the prevention and management of foot problems in diabetes. International Wound Journal, 12(4), 373–374. https://doi.org/10.1111/iwj.12475.
10. Sharoni, S. K. A., Rahman, H. A., Minhat, H. S., Shariff-Ghazali, S., & Ong, M. H. A. (2018). The effects of self-efficacy enhancing program on foot self-care behaviour of older adults with diabetes: A randomised controlled trial in elderly care facility, Peninsular Malaysia. PLoS ONE, 13(3), 1–23. https://doi.org/10.1371/journal.pone.0192417.
11. Umaroh, L. (2018). Pengaruh Diabetes Self Management Education (DSME) Melalui Media Kalender Terhadap Kepatuhan Perawatan Kaki Klien Diabetes mellitus Tipe 2 Di Balai Pengobatan Muhammadiyah Lamongan (Doctoral dissertation, Universitas Airlangga).
12. World Health Organization. (2020). Diagnosis and Management of Type 2 Diabetes. WHO Publications, 42(SUPPL. 1), 2–8. https://doi.org/World Health Organization; 2020 (WHO/UCN/NCD/20.1).
Nanda Fitria, Novia Rizana, Sri Andala, Mursal, Dalillah Afifah “Effect of Diabetes Self-Management Education on the Prevention of Diabetic Foot Injuries ” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.96-100 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/96-100.pdf
Personality Traits as a Determinant of Mathematics Trainee- Teachers on Career Choice in Tertiary Institution Ekiti state
Abiodun A. Popoola, Oginni O. I. and Akinola A. S.- February 2023 Page No.: 101-106
This study examined the influence of personality traits as determinant of Mathematics trainee teachers on their choice of career in the teaching profession. It specifically investigated how teachers’ personality traits influence their choice of teaching career in secondary schools in Ekiti State. The study adopted descriptive research of correlational design type. The population for this study comprises all the trainee-teachers in tertiary education in Ekiti State. The sample consist of 600 participants which were selected using multi-stage sampling procedure. The instrument used for this study was a questionnaire on personality traits and career choice. Five personality inventory on career choice was used to collect data for the study. Face and content validity of the instrument was ascertained and the reliability of the instrument was carried out. The reliability coefficient of 0.67 was obtained using cronbach alpha, the coefficient was high and therefore adjudge reliable for the study. The instrument was admistered on the respondents in the selected tertiary institution. The data were analyzed using frequency count, percentages and chi-square analysis.. The result revealed that personality traits of Mathematics trainee –teacher influenced their choice of teaching as a career. Mathematics trainee teachers with relevant personality traits shown interest in teaching Mathematics than Mathematics trainee teachers of other personality traits. This investigation concluded with suggested recommendation that school counsellor should encourage Mathematics trainee teacher to accept taking teaching job after their programme instead of looking for other job and better develop interest in Mathematics. School authority and government should create conducive environment that can allow manifestation of relevant personality traits in Mathematics trainee teacher.
Page(s): 101-106 Date of Publication: 26 March 2023
Abiodun A. Popoola
Department of Science Education, Faculty of Education, Ekiti-State University, Ado-Ekiti, Ekiti-State, Nigeria.
Oginni O. I.
Department of Science Education, Faculty of Education, Ekiti-State University, Ado-Ekiti, Ekiti-State, Nigeria.
Akinola A. S.
Department of Science Education, Faculty of Education, Ekiti-State University, Ado-Ekiti, Ekiti-State, Nigeria.
1. Adegoroye A.O.S, Osakinle B.O and Babatunde J.O. (2007) Human personality, social development, mental health and adjustment. Adiant printing limited.
2. Amenah O.V. .and Jimoh O.F.(2020) Influence of Mathematics Teachers’ personality on students performance In Senior Secondary School Mathematics in Niger State, Nigeria. International Journal of Innovation, Social &Science education Research 8 (2) 77-83.
3. Badmus S.J (2017). Influence teachers qualifications on students Mathematics performance and interest. Journal science and education publishing. 1 (2) 56-62.
4. Edwin V.T.(2020). Big five personality test traits. Free Psychological test 8(3) June.
5. Esan E.O (2017). The role of the teacher. Published by Superben printing press Ikere- Ekiti Nigeria
6. Ezenweaning A.E (2019). Teaching Mathematics in secondary school, Journal science and educational publishing. 3 (2) 32-41.
7. McCrae (2018 ). Big five personality characteristics http/erything 2comtittle big five personality characteristics
8. Michael A. (2008). Teacher motivation and incentives in Nigeria. Longman publishing Lagos
9. Odili G. O. (2016). Mathematics in Nigeria Secondary Schools: a teaching perspective. Arachuna publishers, Port Harcourt.
10. Owuamanan O.O (2012). Fundamentals of educational Psychology Boladary publication Ado Ekiti, Ekiti State. Nigeria/
11. Porpat D.F (2009). Perspectives on personality (5th ed). Boston Allyn pearson
12. Steven P.H (2005). Becominga teacher. An introduction to teacher education. Gbemi Shodipo press Ltd. Abeokuta. Nigeria.
13. Richardson R. & Arker E. (2010) Personalities in the classroom. Making the most of them, Kapps Delta P1 46 (2).
14. Strong H.F (2005). Career information in counseling and teaching Boston Allyn and Becon Inc. London.
15. Walinga J. and Strangor C. (2007). Personality and Behaviour Approaches to Measurement. Introduction to Psychology 1st Canadian Edition
16. Willian C.C. ( 2019 ). Interest and personality inventories monograph series 3.
17. Wong, P, Spcipding T.O, Odelic Kleck K and Lin N.O (2010) Anticipated occupational frustration towards effective careers counseling John wiley and sons publisher London.
Abiodun A. Popoola, Oginni O. I. and Akinola A. S. “Personality Traits as a Determinant of Mathematics Trainee- Teachers on Career Choice in Tertiary Institution Ekiti state” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-2, pp.101-106 February 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-2/101-106.pdf