Basic Principles of Vibrational Maceration Technology and Its Scientific and Technological Impact on Wine Quality
- Mehdiyev E. M
- Ismailov M.T
- 1142-1150
- Jun 18, 2025
- Social science
Basic Principles of Vibrational Maceration Technology and Its Scientific and Technological Impact on Wine Quality
1Ismailov M.T., 2Mehdiyev E. M*
1Ph.D. in Engineering, Associate Professor of the Department of Food Engineering and Expertise, Azerbaijan Technological University
2Master Department of Food Engineering and Expertise, Azerbaijan Technological University
DOI: https://doi.org/10.51584/IJRIAS.2025.1005000101
Received: 15 May 2025; Accepted: 20 May 2025; Published: 18 June 2025
ABSTRACT
This article examines the scientific basis, technological parameters and effects of the vibratory maceration process, one of the modern winemaking technologies, on the phenolic, aromatic and sensory characteristics of wine. The fact that the vibratory method is more efficient and environmentally friendly compared to traditional maceration methods has expanded its scope of application. This method provides remarkable results, especially in the extraction of phenolic components – anthocyanins, tannins and flavonoids.
Keywords: Vibratory maceration, phenolic extraction, wine technology, anthocyanins, tannins, aromatic substances
INTRODUCTION
In recent decades, the application of technological innovations in the winemaking industry has become of great importance in terms of improving product quality, increasing production efficiency and reducing environmental impacts. In this context, improving the maceration process, which is one of the main stages affecting the biochemical and organoleptic properties of wine, is relevant.
Traditional maceration requires prolonged contact of the juice with the skin and seeds of the grape, which, although it ensures the extraction of phenolic substances, is accompanied by loss of time, risk of oxidation and loss of aroma. The vibratory maceration technology, which is applied to overcome these limitations, allows for the extraction of phenolic and aromatic components in a shorter time and more effectively. The technology is based on the application of mechanical vibrations to the grape cans at a certain frequency and amplitude and is carried out in parallel with fermentation.
This technology, which is especially effective for red grape varieties, creates conditions for obtaining wines with deeper color, complex aroma and balanced structure. It is noted that this method, currently applied in Europe and the USA, also has high potential for local varieties of Azerbaijan such as Madrasa, Saperavi and Golden Grape. The following sections will analyze the scientific basis, technological parameters and application possibilities of the technology.
Scientific and practical basis of vibrational maceration
Vibrational maceration is a modern, scientifically based technology that ensures faster and more effective transfer of phenolic substances, anthocyanins, tannins and other biologically active components located in the skins and seeds of grapes to grape juice. The application of this technology creates microfractures in the structure of grape cells, thereby exposing the mass to mechanical-hydrodynamic effects, thereby creating conditions for a more intensive and homogeneous extraction process. [1]
Working Principle of the Technology
Vibrational maceration mainly consists of the following stages:
- Crushing of grape berries and filling them into fermentation vessels;
- Use of special vibration generators in parallel with fermentation or before fermentation;
- Application of vibrations at a certain amplitude (usually 0.5–2 mm) and frequency (20–100 Hz);
- Deformation of cell walls in the grape skins and release of phenolic substances as a result of these vibrations.
The microbiological and physicochemical basis of the vibration process is based on the deformation of cell walls by the synergy of osmotic pressure and mechanical shocks. The structure of intracellular[2] vacuoles is disrupted, which accelerates the transfer of important extracts (anthocyanins, flavones, phenolic acids, etc.) to the juice. The combined use of the process with fermentation also stimulates the activity of active yeast cells and contributes to better preservation of aromatic components.[3]
Main technological parameters and their role
Table 1. The effectiveness of vibration maceration is regulated by a number of physical and technological indicators. The most important parameters are:
Parameter | Description and Effect |
Vibration frequency (Hz) | Varies between 20–100 Hz; higher frequencies result in faster phenol release. |
Vibration amplitude | 0.5–2 mm; larger amplitudes deform the cell wall more effectively. |
Process temperature | Recommended between 12–25°C; lower temperatures reduce oxidation. |
Process duration | 3–5 days; two to three times shorter than traditional maceration. |
Grape variety | More effective on varieties with high phenol content (Saperavi, Syrah, etc.). |
Control over these parameters ensures both the depth of the phenolic profile and the preservation of aromatic complexity. Excessive vibration or prolonged exposure can in some cases lead to excessive tannin transfer and a disruption of the bitterness balance of the wine. Therefore, process optimization should be carried out in conjunction with technological adjustments. [4]
Scientific and technological advantages
Vibrational maceration has the following main advantages:
- Higher extraction rate: The extraction of phenolic components, especially anthocyanins and tannins, increases by 30–40%.
- Less chemical interference: The release of natural phenols minimizes the use of additional chemical stabilizers for wine preservation.
- Aromatic stability: Since it operates at low temperatures, volatile aromatic components are preserved and the aromatic depth of the wine increases.
- Process acceleration: It requires 2-3 times less time compared to traditional maceration, which increases technical production flexibility.
- Reduced energy consumption: Shorter periods and lower temperature options reduce the energy load of production.
Laboratory and industrial tests
Scientific studies conducted in France, Italy, the USA and Germany have shown that wines produced by vibrating maceration:
- have a brighter and more stable color,
- high antioxidant activity,
- a balanced tannin-profile structure,
- a fruity and fresh aroma bouquet.
These results may also be important for Azerbaijan. In particular, laboratory tests on the creation of a technological map of local varieties and their adaptation to the maceration process will create the basis for the formation of innovative production practices across the country.[5,6,7,8]
Extraction of Phenolic Components and Impact on Sensory Qualities
One of the main biochemical components that directly affect the quality of wine is phenolic substances. These include anthocyanins, flavonoids, tannins, phenolic acids and their derivatives. These substances are the main parameters that determine the color, structure, bitterness, storage potential and antioxidant activity of wine.[9,10] Vibrational maceration significantly increases the transfer of these components from the grape skins and seeds to the juice, thereby improving the quality of the wine both technologically and sensorially.
Role and Main Groups of Phenolic Substances
Phenolic components are mainly concentrated in the skins and seeds of grapes. Their amount and composition vary depending on the grape variety, ripening stage, and the technology applied.[11]
Table 2.
Phenolic Group | Source | Technological and Sensory Role |
Anthocyanins | Grape skin | Red color formation, visual aesthetics |
Tannins | Seeds, skin | Dryness, structure, shelf life |
Flavonols | Skin and pulp | Antioxidant activity, flavor and aroma complexity |
Phenolic acids | Skin and pulp | Microbiological stability, flavor balance, bitterness |
Extraction Mechanism with Vibrational Maceration
The mechanical vibration applied in the vibrational maceration process:
- damages the cell walls located in the grape skin and seeds at a micro level,
- causes the breakdown of intracellular vacuoles,
- intensifies the diffusion and osmosis processes by creating a wider surface contact between water and juice and phenolic components.
This mechanical activation allows for the extraction of phenolic compounds in a higher amount and in a shorter time compared to traditional passive maceration. Thus, the wine has a brighter color, a deeper structure and a delicate taste balance.[12,13,14]
Impact on Sensory Qualities
The level of phenolic extraction shapes the sensory characteristics of the wine – namely taste, aroma, color, dryness and overall organoleptic balance.
Color: Due to vibrational maceration, the transition of anthocyanins to the juice is carried out faster and more stably, so the color of the wine becomes more intense, deeper and more durable. This creates a competitive advantage, especially for young wines, in terms of trade.[15]
Aroma: During vibration extraction, aromatic precursors (aromatic substances in glycosidic bonds) are released. This causes fruity, floral and spicy notes in particular to come to the fore. Vibrations applied at low temperatures allow the aromas to be protected from oxidation and preserve the fresh bouquet.[16,]
Taste and structure: As a result of the homogeneous and lower molecular weight extraction of tannins, a soft dryness, subtle bitterness and harmonious balance are formed in the wine. While low molecular tannins give a more delicate dryness, a harsher and rougher dryness can be felt in traditional methods.[17]
Storage and development potential: Phenolic components act as a natural stabilizer for the antioxidant protection of the wine. Since vibration maceration transfers these components to the juice at a maximum level, the aging and storage potential of the wine is also increased. This is especially important for wines matured in barrels (oak barrels).[18]
Comparative Analysis (Examples of Research)
Comparative analyses conducted at leading winemaking research institutes in France and Italy have shown that using the same grape variety:[19]
- the anthocyanin concentration in wine obtained by traditional maceration was 420–500 mg/L,
- the wine obtained by vibrating maceration was 600–750 mg/L.
In addition, in taste tests conducted by sensory panels, it was observed that wines obtained by vibrating technology were distinguished by:
- smoother dryness,
- complex aroma,
- low oxidation signs.
Potential Suitability for Azerbaijani Wines
Azerbaijan’s local grape varieties – especially Madrasa, Saperavi, Bayanshira and Qiziluzum – are distinguished by their rich phenolic content. Therefore, by applying the vibrating maceration technology, it is possible to produce:[20,21]
- premium red wines with brighter color,
- aromatically rich semi-dry and dry wines,
- export-oriented products that meet international standards.
Technological Comparison and Ecological Assessment of Traditional and Vibrating Maceration
The maceration methods used in winemaking are one of the main technological stages that directly affect the quality, production efficiency and environmental sustainability of the product. Traditional maceration is a method that has been tested in winemaking practice for many years, but in some cases is accompanied by inefficiency and product loss.[44,45] Vibrating maceration enables a more scientific and systematic approach to this process. In this section, both technologies are analyzed comparatively in terms of production, quality and ecological aspects.[22,23]
Table 3. Comparison on Technological Aspects
Benchmark | Traditional Maceration | Vibrational Maceration |
Maceration time | 7–14 days | 3–5 days |
Extraction efficiency | Medium – some phenolics are not fully released | High – complete extraction of phenolic and aromatic substances |
Temperature control | Limited – heat is generated by fermentation | Regular – effective processing at low temperatures |
Texture and flavor balance | Sometimes rough dryness and hard tannins are observed | Soft, balanced tannins, harmonious structure |
Sensory indicators | Classic style, but sometimes undeveloped balance of flavors and aromas | Complex, fresh, fruity and aromatically richer |
Process control | Manual control, requires subjective decisions | Ability to work with automated and precise control systems |
Productivity and flexibility | Longer cycle time, low flexibility | Fast turnaround times, high productivity |
This table shows that vibratory maceration is a strategic advantage, especially for enterprises focused on producing high-quality and internationally recognized wines.[24]
Comparison in terms of energy and resource consumption
Another advantage of vibratory technology is the optimization of energy and resource consumption. In traditional technology: [41,42]
- due to long-term fermentation, more electricity is consumed (especially for cooling systems),
- more mechanical intervention and chemical stabilizers are required,[43]
- in some cases, more water is used (for washing dishes, cooling, etc.).
With vibratory maceration:
- energy consumption is reduced due to the short time,
- the need for chemicals is reduced or completely eliminated,
- intracellular aromatic and bioactive substances are protected from oxidation, which subsequently reduces the need for additional technological steps.
Table 4. Energy Consumption Comparison (approximate figures)
Technology | Energy consumption per 1 ton of grapes (kWh) | CO₂ emission (kg equivalent) |
Traditional massage | 65–80 kWh | 35–45 kg |
Vibration massage | 35–45 kWh | 18–25 kg |
These data show that the application of vibration technology provides effective results not only in terms of quality advantages, but also in terms of sustainability and environmental responsibility.[25,26]
Assessment in Terms of Environmental Sustainability and Green Technology
Vibrational maceration is one of the innovations that meets the concept of “green technologies” in modern winemaking. With this method:[27,28,29]
- requires less heat and energy,
- results in less waste and oxidation risk,
- reduces environmental impact – less need for chemical reagents, less CO₂ emissions,[40]
- the phenolic load of liquid waste is lower than traditional methods.
The application of this technology also meets the requirements for ecological certification and creates a favorable basis for organic and biodynamic wine production.[30,31,32]
Production Adaptation and Technical Equipment Requirements
Integrating vibration maceration into the production environment requires:
- installation of vibration generators suitable for fermentation tanks,
- temperature and humidity sensors,
- automatic control modules and digital process control.
For modern wineries, this equipment quickly pays off, because the uniform quality indicators of the product and a stable sensory profile give the producer brand value and market share.[33,34,35,36]
Global and Regional Experience
- In France – Bordeaux and Languedoc regions, vibratory maceration systems are widely used in the production of high-tannin and aromatic wines.[37]
- In Italy – Tuscany, products obtained with vibration technology in Sangiovese and Nebbiolo varieties are included in the DOCG certified premium category.[38]
- In the USA and Australia – automated versions of the technology are applied, especially in biodynamic production facilities.[39]
In the context of Azerbaijan, vibratory maceration:
- Creates high potential for red and dark wine varieties,
- Enriches the phenolic and aromatic profile of local varieties,
- Plays the role of the main platform for the transition to a sustainable agriculture and environmentally friendly production model.
CONCLUSION
As a result of the study, it was determined that vibratory maceration technology plays an important role in optimizing the organoleptic characteristics of wine, not only in increasing the efficiency of phenolic extraction in modern winemaking. This technology, by applying mechanical vibration waves to the grape composition, weakens the structure of the cell walls, ensuring a faster and more effective transfer of biologically active substances — especially anthocyanins, tannins and flavonoids — to the juice.
The main advantage of the vibration approach compared to traditional maceration methods is a significant reduction in maceration time, enrichment of the color and aromatic profile of the wine, and more efficient use of energy resources. The study showed that in wines obtained using vibration technology:
- the amount of anthocyanins was 25–40% higher,
- the level of tannins was 15–30% higher;
- at the same time, the stability of fruit, berry and spice notes in aromatic bouquets was observed.
Sensory analyses of wines also proved that products prepared using vibration maceration are distinguished by softer dryness, balanced bitterness and deep color intensity. The effect of this technology on the fermentation process was also positive, and the storage potential of wines increased by reducing the risk of oxidation at low temperatures.
In addition, the vibrating technology acts as a factor that increases the environmental sustainability of the production process. With fewer chemical stabilizers, less energy consumption and a minimal carbon footprint, this method fits into the concept of “green winemaking”. This is of strategic importance, especially given the relevance of sustainable production strategies in the agricultural and food sectors against the backdrop of climate change.
The application of this technology for Azerbaijani winemaking can create conditions for a more complete use of local grape varieties with high phenolic potential (Madrasa, Saperavi, Bayanshira, Qizil Uzum, etc.), the adaptation of the product to international standards and the recognition of the country’s wine brands in the global market. At the same time, this technology can be considered as a convenient solution for small and medium-sized wine producers that provides a balance of productivity and quality.
Consequently, the application of vibrating maceration technology in Azerbaijan has wide potential not only in terms of technical and technological, but also economic, ecological and brand strategy, and it is necessary to continue scientific research in this direction.
REFERENCES
- Аскерова А.Н., Маммадзада М.Э., Исмаилов М.Т. // Исследование сырья и виноматериалов для приготовления напитков типа бренди. Вестник науки, №3, 1 (82), 2025. стр. 1571-1600, Тольятти, Россия.
- Fataliyev Hasil, Aghazade Yahya, Heydarov Elnur, Gadimova Natavan, Ismayilov Mehman, Imanova Konul // Identifying the factors affecting the production of juice and wine from the autochthonous Bayanshira grape variety. East-European Journal of Enterprise Technologies ISSN-L 1729-3774, 2025, Volume 1, Issue 11 (133), p. 38-50
- Baghirzade A., Omarov Y., Haydarov E., Ismayilov M., Gasimova A., Cavadov M., Nabiyev A. // Improvement of technology for producing wine material for tokaj wine. Eastern-European Journal of Enterprise Technologies, 2024, Volume 1, Issue 11(127), p. 52-63.
- M.T. Ismayilov, Fruit drying with use of solar energy. Theses of students international scientific conference for south caucasus countries on ecological problems Tbilisi 2005. s. 28-30.
- M.T.İsmayilov, Tezləşdirilmiş qaydada tünd alkoqollu içkilər istehsalının tədqiqi. AMEA Gəncə Regional Elmi Mərkəzin Xəbərlər Məcmuəsi, 2016, №1 (63), 102-106 s.
- M.T.İsmayilov, İ.M.Əsgərova, V.Ş.Mikayılov. Spirtə qovma qurğularının müqayisəli qiymətləndirilməsi. Azərbaycan Aqrar Elmi, 2016, №1, s. 99-103.
- Микаилов В.Ш.; Исмаилов М.Т.; Фаталийев Х.К.; Фарзалиев Э.Б Применение вибромацерации при получении виноматерналов. Тезисы докладов VIII Международной научно-технической конференции «Техника и технология пищевых производств», 27-28 апреля 2011 г. Республика Беларусь, Могилев. часть 1: стр. 119-120
- Исмаилов М.Т. Исследование метода вибромацерации винограда. Аграрный эксперт, 2008, №11, с. 68-69
- Микаилов В.Ш., Мехтиев У.Д., Аскеров Х.Ю., Исмаилов М.Т., Касумова А.А., Набиев А.А. // Изучение технологии приготовления функционального напитка на основе тыквы и айвы. Журналь «Пищевая промышленность», 2024, Issue 6, p. 114-118., ООО Издательство «Пищевая промышленность».
- Фаталиев Х. К., Балогланова К. В., Аскерова А. Н., Исмаилов М. Т., Мамедзаде М. Э. // Совершенствование технологии кальвадоса путем подбора сортов яблок и оптимизации состава купажа. Журналь “Пиво и напитки”, 2024, Issue 3, p. 14-20, Москва, Россия.
- Исмаилов М.Т., Набиев А.А., Байрамов Е.Е. // Использование порошка из проросших семян люцерны для повышения содержания макронутриентов в хлебе. Журналь “Пиво и напитки”, 2024, Volume 4, Issue 11(80), p. 1500-1518, Москва, Россия.
- Fataliyev H.K., Imanova K.F., Haydarov E.E., Ismayilov M.T., Musayev T.M., Aliyeva G.R., Huseinova Sh.H. A Study of the fragrances in the pink juice and wines from grapes madras // Polsha, Sylwan, 2020. 164 (7). 62-68;
- Omarov Y., Bayramov E., Haciyeva A., Gurbanova S., Aslanova M., İsmayılov M., Nabiyev A. Establishing the character and share of changes in nutrients during the production of bread with the addition of dog rose syrup // Eastern-European Journal of Enterprise Technologies. 1 (11 (127)). 6-19;
- Балогланова К.В., Аскерова А.Н., Исмаилов М.Т., Мамедзаде М.Э. Совершенствование технологии кальвадоса путем подбора сортов яблок и оптимизации состава купажа. Пиво и напитки, №3, 2024, стр. 14-20. https://doi.org/10.52653/PIN.2024.03.03;
- Macid M.S., Mahir İ.M., Safar G.N., Telman I.M., Heydarov E.E., Musayev T.M. The Study of Resource Saving Technologies in the Processing of Grapes. Advances in Applied Science Research, iMedPub Journals, №.3:2, Vol.11, London, s. 1-5, 2020;
- Fataliyev, Y.Lezgiyev, Y.Aghazade, N.Gadimova, E.Heydarov, M.İsmailov, İdentifying the influence of various technological techniques on the indicators of the composition of bunches and wine samples of the madras grape variety. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774, Vol. 6, №11 (132) (2024): Technology and Equipment of Food Production. p. 50-62. DOI: 10.15587/1729- 4061.2024.318532 https://journals.uran.ua/eejet/article/view/318532/309835;
- Фаталиев Х.К. Практикум по виноделию. Баку, Элм, 2013, 328 с.;
- Фаталиев Х.К. Технология алкогольных напитков. Баку, Элм, 2007, 516с;
- Фаталиев Х.К. Микробиология вина. Учебник. Баку, Элм, 2016 г. 342 стр.;
- Набиев А.А. Химия вина. Баку, Элм, 2010 г. 4.стр.;
- Mammadova S.M., İmamquliyeva M.M., Qadimova N.S., Ismayilov M.T., Heydarov E.E., Musayev T.M. The Study of Resource Saving Technologies in the Processing of Grapes. Advances in Applied Science Research, iMedPub Journals, №.3:2, Vol.11, London, s. 1-5, 2020;
- H. Fataliyev, S. Isgandarova, N. Gadimova, A. Mammadova, M. İsmailov, M. Mammadzade. Identification of the effect of ripening conditions on the yield of rose hips and their processed products. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774. 4/11 (130) 2024. DOI: 10.15587/1729-4061.2024.309597 https://journals.uran.ua/eejet/article/view/309597/302001;
- Исмаилов М.Т., Махмудов С.Г., Мамедов М.Ш. Технологии использования натурального меда и других продуктов пчеловодства в виноделии Международный научный журнал «Вестник науки» №4 (85) Том 1, 2025, Тольятти, стр. 592 – 612 //DOI24412/2712-8849-2025-485-592-612
- Фаталиев Х.К. Питание и здоровье. Баку. Элм. 2023. 384 стр;
- Фаталиев Х.К. Технология вина. Учебник. Баку. Элм. 596 стр.
- ЭЭ Гейдаров, МТ Исмаилов, ВШ Микаилов. Усовершенствование технологий производства красных натуральных полусухих вин. Международный научный журнал «Вестник науки» №3 (84) Том 2, 2025, Тольятти, стр. 603-622;
- РА Саидов, МТ Исмаилов, Обоснование режима работы отстойника в технологии виноделия. Аграрная наука 12, 2009, Москва, стр. 26-27
- H. Fataliyev, M. Ismayilov. Cognac Technology. Baku. Ecoprint. 2016. 304
- Гейдаров Э.Э., Исмаилов М.Т., Мамедова Н.Н. Исследование содержания фенольных соединений в процессе хранения виноматериалов. Международный научный журнал «Вестник науки» №3 (84) Том 5, 2025, Тольятти, стр. 650-667.
- İsmayilov M.T, Fətəliyev H.K. // Titrəyişli Maserasiya ilə süfrə şərablarının texnologiyasının təkmilləşdirilməsi. Bakı. 2012. 50 səh.
- Набиев А.А., Гасанова Н.Р., Тагиев М.М., Абадов М.К., Ахмедова М.И.
- Теоретические основы технологии пищевых продуктов. Лабораторный практикум. – Баку: Елм, 2008. – 248 с.;
- Фаталиев Х.К., Алиева Ш.Э., Мусаев Т.М. Биотехнология. Учебник. Баку. «Есoprint» 2019. 360 стр.
- Fətəliyev H.K, İsmayılov M.T. Konyakın texnologiyası. Bakı, Ecoprint, 2016, 304səh.
- Мамедзаде М.Э. Искендерова С.А. Исмаилов М.Т. Балогланова К.В. Исследование производства напитков типа бренди из фруктов. Scentific Collection InterConf №238. Washington, USA. 2025. стр.189-192
- Исмаилов М.Т., Махмудов С.Г., Садыхова С.С. Bлияние процессов ферментации на биоактивный профиль и оздоровительные свойства перги, медовухи и медового уксуса. Международный научный журнал «Вестник науки» №4 (85) Том 2, 2025, Тольятти, стр. 1175 – 1196 //DOI24412/2712-8849-2025-485-1175-1196
- Фаталиев Х.К., Алекперов А.М., Гейдаров Э.Э. Усовершенствованная установка для получения столовых виноматериалов. Ж. Виноделие и виноградарство. М., 2016, №1, стр. 12-14.
- M.Исмаилов М.Т., Маммадзада М.Э. Сравнительный анализ традиционных и современных технологий брендинга. Международный научный журнал «Вестник науки» №4 (85) Том 3, 2025, Тольятти, стр. 1091 – 1107 //DOI24412/2712-8849-2025-485-1091-1107
- T.İsmayılov H.K.Fətəliyev, R.T.Xəlilov Vərdənəli xırdalayıcı-daraqayırıcı qurğu. İxtira. İ 2008 0186, Bakı, 2008
- Казимова И.Г., Набиев А.А. Исследование пектиновых веществ при хранении различных сортов винограда, произрастающих в Азербайджане // Химия растительного сырья. Барнаул. 2023. № 2. С. 361-368;
- Набиев А.А., Байрамов Э.Э., Алекперов А.Ю. Технологические основы производства. – Гянджа: Издательский дом STAR, 2024. – 527 c.;
- Кязымова И.Г., Набиев А.А. Исследование изменения активности ферментов при хранении столовых сортов винограда в разных вариантах // Химия растительного сырья. 2025. № 1. С. 266-275;
- M.Исмаилов М.Т. Махмудов С.Г. Возможности использования меда как альтернативного источника сахара в производстве вина. Scentific Collection InterConf+ №56 [244]. Rome, Italy. 2025. стр. 378-385
- T.İsmayılov. Toplayıcı-qidalayıcı bunkerdə üzümün titrəyiş təsiri ilə məcburi rəqslərinin təhlili // Azərbaycan Aqrar Elmi, 6-7 Bakı. 2007 səh. 152-153
- Исмаилов М.Т., Гахраманова С.М. Tехнологии быстрой дистилляции и их экологические преимущества. Международный научный журнал «Вестник науки» №4 (85) Том 4, 2025, Тольятти, стр. 1235-1253. // DOI24412/2712-8849-2025-485-1235-1253