Cuticular Hydrocarbons in Insects: A review on Molecular Architecture, Physiological Roles, and Evolutionary Significance
Authors
Department of Zoology PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu (India)
Department of Zoology PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu (India)
Department of Zoology PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu (India)
Article Information
DOI: 10.51584/IJRIAS.2025.1010000099
Subject Category: Education
Volume/Issue: 10/10 | Page No: 1159-1170
Publication Timeline
Submitted: 2025-10-23
Accepted: 2025-10-29
Published: 2025-11-11
Abstract
Cuticular hydrocarbons (CHCs) form the dominant lipid coating of insect exoskeletons, serving as the interface between physiology, communication, and environmental adaptation. Originally regarded as waterproofing waxes, CHCs are now recognised as multifunctional molecules linking metabolism, behaviour, and evolution. This review synthesises advances in molecular biosynthesis, physiological roles, and adaptive diversification of CHCs across insect taxa. Recent genomic, transcriptomic, and ecological studies reveal that elongases, desaturases, and cytochrome P450 decarbonylases form an integrated network generating taxon-specific hydrocarbon blends that underpin both survival and social organisation. We discuss CHC diversification as an adaptive continuum—a trajectory from structural protection to complex chemical signalling—and highlight emerging research that connects hydrocarbon biology to environmental stress responses, pest management, and biomimetic innovation. Finally, we identify key gaps in understanding CHC gene regulation, neural perception, and ecological plasticity, proposing a predictive framework for linking genotype, phenotype, and ecological context in insect chemical ecology.
Keywords
Cuticular hydrocarbons, oenocytes, lipid metabolism
Downloads
References
1. Blomquist, G. J., & Bagnères, A. G. (Eds.). (2010). Insect hydrocarbons: Biology, biochemistry, and chemical ecology. Cambridge University Press. [Google Scholar] [Crossref]
2. Blomquist, G. J., & Dillwith, J. W. (1985). Cuticular lipids. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry and pharmacology (Vol. 3, pp. 117–154). Pergamon Press. [Google Scholar] [Crossref]
3. Chertemps, T., Duportets, L., Labeur, C., Ueda, R., Takahashi, K., Saigo, K., & Wicker-Thomas, C. (2006). A female-specific elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 103(24), 9146–9151. [Google Scholar] [Crossref]
4. Chung, H., & Carroll, S. B. (2015). Wax, sex, and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37(7), 822–830. [Google Scholar] [Crossref]
5. Dallerac, R., Labeur, C., Jallon, J. M., Knipple, D. C., Roelofs, W. L., & Wicker-Thomas, C. (2000). A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 97(17), 9449–9454. [Google Scholar] [Crossref]
6. Endler, A., Liebig, J., Schmitt, T., Parker, J. E., Jones, G. R., Schreier, P., & Hölldobler, B. (2004). Surface hydrocarbon profiles of queens in the ant Camponotus floridanus: Changes with age and reproductive status. Proceedings of the National Academy of Sciences, 101(9), 2941–2946. [Google Scholar] [Crossref]
7. Fan, Y., Zurek, L., Dykstra, M. J., & Schal, C. (2003). Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. Naturwissenschaften, 90(3), 121–126. [Google Scholar] [Crossref]
8. Ferveur, J. F. (2005). Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behavior Genetics, 35(3), 279–295. [Google Scholar] [Crossref]
9. Fröhlich, D., Zangl, L., Raspotnig, G., & Koblmüller, S. (2022). Inter-and intrasexual variation in cuticular hydrocarbons in Trichrysis cyanea (Linnaeus, 1758)(Hymenoptera: Chrysididae). Insects, 13(2), 159. [Google Scholar] [Crossref]
10. Gibbs, A. G. (1998). Waterproofing properties of cuticular lipids in insects. American Zoologist, 38(3), 471–482. [Google Scholar] [Crossref]
11. Gibbs, A. G. (2002). Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology, 48(4), 391–400. [Google Scholar] [Crossref]
12. Gibbs, A. G., & Rajpurohit, S. (2010). Cuticular lipids and water balance. In G. J. Blomquist & A. G. Bagnères (Eds.), Insect hydrocarbons (pp. 100–120). Cambridge University Press. [Google Scholar] [Crossref]
13. Hadley, N. F. (1994). Water relations of terrestrial arthropods. Academic Press. [Google Scholar] [Crossref]
14. Howard, R. W., & Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50(1), 371–393. [Google Scholar] [Crossref]
15. Howard, R. W., & Blomquist, G. J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371–393. [Google Scholar] [Crossref]
16. Katase, M., & Chino, H. (1982). Transport of hydrocarbons in the hemolymph of the insect Rhodnius prolixus: Role of lipophorin. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 710(3), 341–348. [Google Scholar] [Crossref]
17. Kefi, M., Rivera-Perez, C., Belles, X., & Martin, D. (2019). The P450 enzyme CYP4G1 mediates cuticular hydrocarbon synthesis in the mosquito Anopheles gambiae. Insect Biochemistry and Molecular Biology, 107, 10–19. [Google Scholar] [Crossref]
18. Lockey, K. H. (1988). Lipids of the insect cuticle: Origin, composition, and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 89(4), 595–645. [Google Scholar] [Crossref]
19. Lockey, K. H. (1991). Insect hydrocarbon classes: Implications for chemotaxonomy. Insect Biochemistry, 21(1), 91–97. [Google Scholar] [Crossref]
20. Makki, R., Cinnamon, E., & Gould, A. P. (2014). The development and functions of oenocytes. Annual Review of Entomology, 59, 405–425. [Google Scholar] [Crossref]
21. Martin, S. J., & Drijfhout, F. P. (2009). A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35(10), 1151–1161. [Google Scholar] [Crossref]
22. Martin, S. J., & Drijfhout, F. P. (2009). Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. Journal of Chemical Ecology, 35(368-374). [Google Scholar] [Crossref]
23. Menzel, F., Schmitt, T., & Blüthgen, N. (2017). Intraspecific variation of cuticular hydrocarbons in ants. Frontiers in Ecology and Evolution, 5, 43. [Google Scholar] [Crossref]
24. Moussian, B. (Ed.). (2025). Insect Anatomy: Structure and Function. Academic Press. [Google Scholar] [Crossref]
25. Nunes, T. M., Turatti, I. C., Lopes, N. P., Zucchi, R., & Bento, J. M. S. (2014). Age-dependent changes in cuticular hydrocarbon profiles of the honey bee Apis mellifera workers. Naturwissenschaften, 101(7), 573–579. [Google Scholar] [Crossref]
26. Ozaki, M., Wada-Katsumata, A., Fujikawa, K., Iwasaki, M., Yokohari, F., Satoji, Y., … Nisimura, T. (2005). Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science, 309(5732), 311–314. [Google Scholar] [Crossref]
27. Page, M., Nelson, D. R., & Blomquist, G. J. (1990). Cuticular hydrocarbons of insects: Biochemical and taxonomic significance. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 95(4), 747–761. [Google Scholar] [Crossref]
28. Qiu, Y., Tittiger, C., Wicker-Thomas, C., Le Goff, G., Young, S., Wajnberg, E., Fricaux, T., Taquet, N., Blomquist, G. J., & Feyereisen, R. (2012). An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proceedings of the National Academy of Sciences, 109(37), 14858–14863. [Google Scholar] [Crossref]
29. Romer, F., Hillyer, J. F., & Mirth, C. K. (2018). Hormonal regulation of cuticular lipid biosynthesis in Drosophila. Frontiers in Physiology, 9, 1350. [Google Scholar] [Crossref]
30. Rouault, J.-D., Marican, C., Wicker-Thomas, C., & Jallon, J. M. (2004). Relations between cuticular hydrocarbon polymorphism, resistance against desiccation and breeding temperature: A model for hydrocarbon evolution in Drosophila melanogaster and D. simulans. Genetica, 120(3), 195–212. [Google Scholar] [Crossref]
31. Rourke, B. C., & Gibbs, A. G. (1999). Effects of temperature on cuticular lipids and water balance in the desert grasshopper Taeniopoda eques. Journal of Experimental Biology, 202(15), 1977–1987. [Google Scholar] [Crossref]
32. Schal, C., Sevala, V. L., Capurro, M. L., Snyder, T. E., Blomquist, G. J., & Bagnères, A. G. (1998). Tissue distribution and lipophorin transport of hydrocarbons and sex pheromones in the German cockroach Blattella germanica. Journal of Insect Physiology, 44(6), 585–593. [Google Scholar] [Crossref]
33. Silva-Torres, C. S., Zacarias, M. S., & Torres, J. B. (2018). Applications of insect hydrocarbons in forensic entomology: A review. Forensic Science International, 289, 200–210. [Google Scholar] [Crossref]
34. van Zweden, J. S., & d’Ettorre, P. (2010). Nestmate recognition in social insects and the role of cuticular hydrocarbons. In G. J. Blomquist & A. G. Bagnères (Eds.), Insect hydrocarbons (pp. 222–243). Cambridge University Press. [Google Scholar] [Crossref]
35. Wicker-Thomas, C., & Chertemps, T. (2010). Molecular biology and genetics of hydrocarbon production. In G. J. Blomquist & A. G. Bagnères (Eds.), Insect hydrocarbons (pp. 53–74). Cambridge University Press. [Google Scholar] [Crossref]
36. Zhou, Y., Chen, C., & Guo, X. (2020). Manipulation of cuticular hydrocarbon composition in pest insects: A new direction for pest control. Pest Management Science, 76(12), 4086–4096. [Google Scholar] [Crossref]
37. Zhu, G. H., Ye, G. Y., Hu, C., & Xu, X. H. (2006). Developmental changes of cuticular hydrocarbons in Chrysomya megacephala (Diptera: Calliphoridae) pupae and their application in forensic entomology. Applied Entomology and Zoology, 41(4), 515–522. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Assessment of the Role of Artificial Intelligence in Repositioning TVET for Economic Development in Nigeria
- Teachers’ Use of Assure Model Instructional Design on Learners’ Problem Solving Efficacy in Secondary Schools in Bungoma County, Kenya
- “E-Booksan Ang Kaalaman”: Development, Validation, and Utilization of Electronic Book in Academic Performance of Grade 9 Students in Social Studies
- Analyzing EFL University Students’ Academic Speaking Skills Through Self-Recorded Video Presentation
- Major Findings of The Study on Total Quality Management in Teachers’ Education Institutions (TEIs) In Assam – An Evaluative Study