AI-Assisted Point of Care Ultrasound (POCUS) Vs. Mammography for Early Breast Cancer Detection: A Comparative Review
Authors
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Clinical Research Department, Validus Institute Inc., Fallbrook, CA (USA)
Article Information
DOI: 10.51584/IJRIAS.2025.10100000125
Subject Category: Artificial Intelligence
Volume/Issue: 10/10 | Page No: 1409-1423
Publication Timeline
Submitted: 2025-10-18
Accepted: 2025-10-24
Published: 2025-11-14
Abstract
Background: Mammography (MG) is the current standard for population screening and mortality reduction, but sensitivity declines in dense breasts, and access can be limited in low-resource settings. Objective: Identify and synthesize published comparisons of AI-assisted ultrasound evaluation, particularly handheld/Point of Care Ultrasound (POCUS) against standard mammography strategies for early detection; summarize outcomes (sensitivity, specificity, cancer detection rate [CDR], interval cancers, recall/biopsy rates), and outline where artificial intelligence (AI) + Point of care ultrasound (POCUS) may be superior.
Findings: Randomized and cohort data show Mammography + ultrasound detects more cancers and halves interval cancers versus Mammography alone (trade-off: lower specificity). Emerging AI-assisted POCUS demonstrates very high sensitivity for palpable masses on portable devices and can safely triage 38–67% of benign cases away from referral imaging. This is based on published articles and a meta-analysis review. In dense breasts, mammography-supplemental US outperforms MG+AI on several diagnostic endpoints. Nationwide real-world programs show MG+AI increases CDR over MG alone, according to a 2025 published article reported by Eisemann et al. (2025) in Nature Medicine
Conclusion: Direct RCTs of AI-POCUS vs Mammography for screening are not yet published; however, across published comparative articles, ultrasound-based strategies and especially AI-assisted POCUS triage are clinically advantageous in certain medical cases, for example, dense breasts, palpable masses, low-resource settings, and are likely to be non-inferior, and sometimes superior to MG-only strategies for early detection, albeit with a specificity trade-off that AI may reduce (Ohuchi et al., 2016).
Keywords
Comparison study, Mammography, Breast ultrasound screening
Downloads
References
1. Berg, W. A., Zhang, Z., Lehrer, D., Jong, R. A., Pisano, E. D., Barr, R. G., Böhm-Vélez, M., Mahoney, M. C., Evans, W. P., Larsen, L. H., Morton, M. J., Mendelson, E. B., Farria, D. M., Cormack, J. B., Marques, H. S., Adams, A., Yeh, N. M., Gabrielli, G., & ACRIN 6666 Investigators. (2012). Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA, 307(13), 1394–1404. https://doi.org/10.1001/jama.2012.388 [Google Scholar] [Crossref]
2. Bunnell, A., Valdez, D., Strand, F., Glaser, Y., Sadowski, P., & Shepherd, J. A. (2025). Artificial intelligence–enhanced handheld breast ultrasound for screening: A systematic review of diagnostic test accuracy. PLOS Digital Health, 4(9), e0001019. https://doi.org/10.1371/journal.pdig.0001019 [Google Scholar] [Crossref]
3. Duffy, S. W., Agbaje, O., Tabár, L., Vitak, B., Bjurstam, N., Björneld, L., Myles, J. P., & Warwick, J. (2005). Overdiagnosis and overtreatment of breast cancer: Estimates of overdiagnosis from two trials of mammographic screening for breast cancer. Breast Cancer Research, 7(6), 258. https://doi.org/10.1186/bcr1354 [Google Scholar] [Crossref]
4. Eisemann, N., Bunk, S., Mukama, T., Baltus, H., Elsner, S. A., Gomille, T., Hecht, G., Heywang-Köbrunner, S., Rathmann, R., Siegmann-Luz, K., Töllner, T., Vomweg, T. W., Leibig, C., & Katalinic, A. (2025). Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nature Medicine. https://doi.org/10.1038/s41591-024-03408-6 [Google Scholar] [Crossref]
5. Giordano, L., von Karsa, L., Tomatis, M., Majek, O., de Wolf, C., Lancucki, L., del Moral, A., & Esperanza, M. (2012). Mammographic screening programmes in Europe: Organization, coverage and participation. Journal of Medical Screening, 19(Suppl 1), 72–82. https://doi.org/10.1258/jms.2012.012085 [Google Scholar] [Crossref]
6. Kim, S., Fischetti, C., Guy, M., Hsu, E., Fox, J., & Young, S. D. (2024). Artificial intelligence (AI) applications for point-of-care ultrasound (POCUS) in low-resource settings: A scoping review. Diagnostics, 14(15), 1669. https://doi.org/10.3390/diagnostics14151669 [Google Scholar] [Crossref]
7. Khazaei, H., Khajehee, B., Khazaei, D., Oteibi, M., Abbas, K., Balaguru, B. (2025). Leveraging Vertex AI for automated ultrasound image analysis: A comprehensive review. IJLTEMAS,14(8), 264–274. https://doi.org/10.51583/IJLTEMAS.2025.1408000033 [Google Scholar] [Crossref]
8. Lee, S. E., Yoon, J. H., Son, N. H., Han, K., & Moon, H. J. (2024). Screening in patients with dense breasts: Comparison of mammography, artificial intelligence, and supplementary ultrasound. American Journal of Roentgenology, 222(1), e2329655. https://doi.org/10.2214/AJR.23.29655 [Google Scholar] [Crossref]
9. Nicholson, W. K., Silverstein, M., Wong, J. B., Barry, M. J., Chelmow, D., Coker, T. R., … U.S. Preventive Services Task Force. (2024). Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. JAMA, 331(22), 1918–1930. https://doi.org/10.1001/jama.2024.5534 [Google Scholar] [Crossref]
10. Ohuchi, N., Suzuki, A., Sobue, T., Kawai, M., Yamamoto, S., Zheng, Y. F., … Ishida, T. (2016). Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): A randomized controlled trial. The Lancet, 387(10016), 341–348. https://doi.org/10.1016/S0140-6736(15)00774-6 [Google Scholar] [Crossref]
11. Oteibi, M., Tamimi, A., Abbas, K., Tamimi, G., Khazaei, D., & Khazaei, H. (2024). Advancing digital health using AI and machine learning solutions for early ultrasonic detection of breast disorders in women. International Journal of Research and Innovation in Applied Science, 11(9), 590–601. https://doi.org/10.51244/IJRSI.2024.11110039 [Google Scholar] [Crossref]
12. Oteibi, M., Khazaei, H., Abbas, K., Balaguru, B., Williams, A. R., & Etesami, F. (2025). Breast imaging and omics for non-invasive integrated classification (BIONIC). International Journal of Research and Innovation in Applied Science, 10(8), 826–835. https://doi.org/10.51584/IJRIAS.2025.100800094 [Google Scholar] [Crossref]
13. Oteibi, M., Tamimi, A., Abbas, K., Tamimi, G., Khazaei, D., & Khazaei, H. (2025). Breast tumor ultrasound: Clinical applications, diagnostic features, and integration with AI. International Journal of Research and Innovation in Applied Science, 11(11), 518–527. https://doi.org/10.51584/IJRIAS.2025.100800034 [Google Scholar] [Crossref]
14. Paci, E. (2012). Summary of the evidence of breast cancer service screening outcomes in Europe and first estimate of the benefit and harm balance sheet. Journal of Medical Screening, 19(Suppl 1), 5–13. https://doi.org/10.1258/jms.2012.012077 [Google Scholar] [Crossref]
15. Şenkaya, A. R., Arı, S. A., Karaca, İ., Kebapçı, E., Öztekin, D. C., & et al. (2023). Association of polycystic ovary syndrome with mammographic density in Turkish women: A population-based case-control study. Revista da Associação Médica Brasileira, 69(10), e20230138. https://doi.org/10.1590/1806-9282.20230138 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- The Role of Artificial Intelligence in Revolutionizing Library Services in Nairobi: Ethical Implications and Future Trends in User Interaction
- ESPYREAL: A Mobile Based Multi-Currency Identifier for Visually Impaired Individuals Using Convolutional Neural Network
- Comparative Analysis of AI-Driven IoT-Based Smart Agriculture Platforms with Blockchain-Enabled Marketplaces
- AI-Based Dish Recommender System for Reducing Fruit Waste through Spoilage Detection and Ripeness Assessment
- SEA-TALK: An AI-Powered Voice Translator and Southeast Asian Dialects Recognition