Reservoir Characterization of the NKO Field, Onshore Niger Delta Basin Using Multi-Seismic Attribute Algorithms
Authors
Department of Petroleum Engineering, Nnamdi Azikiwe University, Awka (Nigeria)
Department of Petroleum Engineering, Nnamdi Azikiwe University, Awka (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.10100000136
Subject Category: Engineering
Volume/Issue: 10/10 | Page No: 1511-1527
Publication Timeline
Submitted: 2025-10-20
Accepted: 2025-10-26
Published: 2025-11-15
Abstract
The use of seismic attributes derived from seismic data has received considerable attention in reservoir characterization, especially in defining reservoir properties, and offers reliable solutions to the perceived reservoir problems within an old producing field (Ahaneku et al., 2016; Nwaezeapu et al., 2017; Obiadi et al., 2019). The seismic data also presents information related to stratigraphic features, rock property changes, and hydrocarbon accumulations. Seismic amplitudes which represent primarily contrast in elastic properties between individual layers contain information about lithology, porosity, pore fluid type, and saturation – information that cannot be gained without integrating seismic attributes, well log, and 3-D structural interpretation. The use of seismic attributes has proven to be one of the best techniques for quantitative seismic interpretation as the method can validate hydrocarbon anomalies and give valuable information during prospect evaluation, reservoir characterization, and production simulation (Taner et al., 1979).
Keywords
Petroleum Engineering
Downloads
References
1. Ahaneku, C. V., Okoro, A. U., Odoh, B. I., Anomneze, B.D. O., Chima, K. I., Ejeke, C. F., and Okoli, I. N., (2016). Sequence Stratigraphy, Structural framework and hydrocarbon migration of Ariki field, Nigeria. Petroleum Exploration and Development, 43(1), p.82-88. [Google Scholar] [Crossref]
2. Ali, K., Rahim, K. (2022). Acoustic, density, and seismic attribute analysis to aid gas detection and delineation of reservoir properties. doi: 10.1016/B978-0-323-85465-8.00007-8 [Google Scholar] [Crossref]
3. Ajakaiye D. E. and Bally A. W., 2002. Some structural styles on reflection profiles from Offshore Niger Delta. Search and discovery Article. 10031. [Google Scholar] [Crossref]
4. Amit, R., Rajeshwaran, D., Saravana, D., Siddharth, B. (2023). Machine Learning Assisted Fracture Network Characterization of a Naturally Fractured Reservoir Using Seismic Attributes. doi: 10.2118/216965-ms [Google Scholar] [Crossref]
5. Anderson, F. C., and Pedro, A.C.O. (2021). An integrated approach for reservoirs characterization: A case study from the Barreirinhas basin in Maranhão, Brazil. Journal of South American Earth Sciences, doi: 10.1016/J.JSAMES.2021.103610 [Google Scholar] [Crossref]
6. Aniefiok, E.I; Udo, J.I, Margaret, U.I, Sunday, W.P (2013) “Petroleum Exploration and production: Past and present Environmental Issues in the Nigeria's Niger Delta”. American Journal of Environmental Protection. Vol.1, No.4, 78-90 [Google Scholar] [Crossref]
7. Doust, H., and E. Omatsola, 1990.NigerDelta, in J. D. Edwards and P. A. Santogrossi, (eds.); Divergent/passive margin basins: AAPG Memoir 48, p. 239-248. [Google Scholar] [Crossref]
8. Evamy, B.D., Haremboure, J., Kammerling, R., Knaap, W.A., Molloy, F.A., and Rowlands, P.H., 1978. Hydrocarbon habitat of Tertiary Niger Delta, America Association of Petroleum Geologists, Bulletin, v. 62, p. 1-39. [Google Scholar] [Crossref]
9. Kumar, Dhananjay. (2023). Seismic AVO analysis for reservoir characterization. Developments in structural geology and tectonics, doi: 10.1016/b978-0-323-99593-1.00002-1 [Google Scholar] [Crossref]
10. Nwaezeapu, V.C., Okoro, A.U., Akpunonu, E.O., Ajaegwu, N.E., Ezenwaka, K.C., Ahaneku, V.A. (2017). Sequence Tratigraphy Approach to Hydrocarbon Exploration: A Case Study Chiadu field Et Eastern Onshore Niger Delta Basin, Nigeria. Journal of Peroleum. [Google Scholar] [Crossref]
11. Nyeneime, O., Etuk., Mfoniso, U., Aka., Okechukwu, A., Agbasi., Johnson, C., Ibuot. (2020). Evaluation of seismic attributes for reservoir characterization over Edi field, Niger delta, Nigeria using 3d seismic data. doi: 10.14419/IJAG.V8I2.31043. [Google Scholar] [Crossref]
12. Obiadi, I., Okoye, F.C., Obiadi, C.M., Irumhe, P., Omeokachie, A.I. (2019). 3-D structural and seismic attribute analysis for field reservoir development and prospect identification in Fabianski Field, onshore Niger delta, Nigeria. Journal of African Earth Sciences Volume 158, October 2019, 103562 [Google Scholar] [Crossref]
13. Oumarou, Sanda., Djeddi, Mabrouk., Tabod, Charles, Tabod., Tabod, Charles, Tabod., Jean, Marcel., Simon, Ngos., Jean, Marcel, Abate, Essi., Joseph, Kamguia. (2021). Seismic attributes in reservoir characterization: an overview. Arabian Journal of Geosciences, doi: 10.1007/S12517-021-06626-1. [Google Scholar] [Crossref]
14. Owen, J. (2024). Reservoir Characterization and Performance Analysis Using Type Curves: A Case Study from South-Eastern Bangladesh. [Google Scholar] [Crossref]
15. Reijers, T.J. A., Petters, S. W. and Nwajide, C. S., 1997. The Niger Delta basin. In: R.C. Selley, (Ed.); African basins, Amsterdam, Elsivier science, sedimentary basins of the world; Vol. 3, p. 151-172. [Google Scholar] [Crossref]
16. Sofolabo, A.O., A., F., Nwakanma. (2022). Reservoir characterization using integrated seismic attributes and petrophysical parameters in an onshore field of Niger delta basin. International journal of advanced geosciences, doi: 10.14419/ijag.v10i1.31972 [Google Scholar] [Crossref]
17. Taner, M. T., Koehler, F. Sheriff, R. E. Complex seismic trace analysis. Society of Exploration Geophysicists GEOPHYSICS 44 (6), 1041-1063, 1979-06 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- An Adaptive Joint Filtering Approach to Wireless Relay Network for Transmission Rate Maximization
- IoT-Integrated Mercury Substance Detection System for Cosmetic Product Safety
- Design and Implementation of Solar PV-Based Railway Microgrid for Linke Hofmann Busch Coaches
- Cost Control Techniques on Civil Engineering Projects in Oyo State, Nigeria
- Strength and Predictive Modeling of Corn Cob Ash Blended Concrete Using Multi-Output Artificial Neural Network Approach