Chloroplast Genome Assembly and Phylogenetic Analysis of Dalbergia Oligophylla Baker ex Hutch & Dalziel, a Range-Restricted, CITES-Protected Timber Species

Authors

Wada Nuraddeen

Department of Science Laboratory Technology, Al-Qalam University Katsina, Nigeria (Nigeria)

Samaila Samaila Yaradua

Department of Biological Science, Umaru Musa, Umaru Musa Yaradua University, Katsina (Nigeria)

Abubakar Bello

Department of Biological Science, Umaru Musa, Umaru Musa Yaradua University, Katsina (Nigeria)

Muhammad Isah Auyo

Department of Plant Biology, Faculty of Life Sciences, Federal University Dutse, Jigawa. (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.101300009

Subject Category: Environment

Volume/Issue: 10/13 | Page No: 113-118

Publication Timeline

Submitted: 2025-11-02

Accepted: 2025-11-10

Published: 2025-11-22

Abstract

Dalbergia oligophylla is a rare and ecologically significant tree species native to West Africa, currently facing threats from habitat degradation and illegal logging. Here, we present the complete chloroplast genome sequence and phylogenetic analysis of D. oligophylla. The chloroplast genome was assembled and annotated using nextgeneration sequencing (NGS) technology. The base composition of D. oligophylla chloroplast genomes provide insight into their evolutionary relationships and genome stability. The genome size of D. oligophylla is (159,300 bp), and the organization of the genome into Large Single Copy (LSC), Small Single Copy (SSC), and Inverted Repeat (IR) regions is 89,046 bp, the IR region is highly conserved, with 25,648 bp, while the SSC region is the smallest with 18,985 respectively. In terms of nucleotide composition, have a relatively balanced distribution of adenine (A) and thymine (T) bases, showing 31.9% A and 31.8% T, Guanine (G) and cytosine (C) contents are lower, with 18.2% G and 18.1% C. Selective pressure analysis identified positively selected genes, including ycf1, rbcL, and accD, which may have adaptive significance in response to environmental pressures. Additionally, variable hotspot regions were detected, which may serve as molecular markers for species identification and conservation management. This study reported and deposited the complete chloroplast genome sequence of D. oligophylla for evolutionary studies in Fabaceae.

Keywords

genetic distance, phylogeny, Dalbergia oligophylla plastome

Downloads

References

1. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., ... & Pevzner, P. A. (2012). [Google Scholar] [Crossref]

2. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 [Google Scholar] [Crossref]

3. Beier, S., Thiel, T., Munch, T., Scholz, U., & Mascher, M. (2017). MISA-web: A web server for microsatellite prediction. Bioinformatics, 33(16), 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 [Google Scholar] [Crossref]

4. Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4), e18. https://doi.org/10.1093/nar/gkw955 [Google Scholar] [Crossref]

5. Hung, T. H., So, T., Sreng, S., Thammavong, B., Boounithiphonh, C., Boshier, D. H., & MacKay, J. J. (2020). Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Scientific Reports, 10, 17749. https://doi.org/10.1038/s41598-020-74814-2 [Google Scholar] [Crossref]

6. Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., dePamphilis, C. W., Yi, T. S., & Li, D. Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241. https://doi.org/10.1186/s13059-020-02154-5 [Google Scholar] [Crossref]

7. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. [Google Scholar] [Crossref]

8. https://doi.org/10.1093/molbev/mst010 [Google Scholar] [Crossref]

9. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 [Google Scholar] [Crossref]

10. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 [Google Scholar] [Crossref]

11. Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J., & Giegerich, R. (2001). REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research, 29(22), 4633–4642. https://doi.org/10.1093/nar/29.22.4633 [Google Scholar] [Crossref]

12. Li, C., Liu, Y., Lin, F., Zheng, Y., & Huang, P. (2022). Characterization of the complete chloroplast genome sequences of six Dalbergia species and its comparative analysis in the subfamily Papilionoideae (Fabaceae). PeerJ, 10, e13570. https://doi.org/10.7717/peerj.13570 [Google Scholar] [Crossref]

13. Lohse, M., Drechsel, O., Kahlau, S., & Bock, R. (2013). OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 41(W1), W575–W581. https://doi.org/10.1093/nar/gkt289 [Google Scholar] [Crossref]

14. Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 [Google Scholar] [Crossref]

15. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., & Huelsenbeck, J. P. (2012). [Google Scholar] [Crossref]

16. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029 [Google Scholar] [Crossref]

17. Sahu, S. K., Liu, M., Li, R., Chen, Y., Wang, G., Fang, D., Sahu, D. N., Wei, J., Wang, S., Liu, H., & He, C. [Google Scholar] [Crossref]

18. (2023). Chromosome-scale genome of Indian rosewood (Dalbergia sissoo). Frontiers in Plant Science, 14, 1218515. https://doi.org/10.3389/fpls.2023.1218515 [Google Scholar] [Crossref]

19. Shi, M., Zhang, Y., Huang, H., Gu, S., Wang, X., Li, S., Zhao, Z., & Tu, T. (2024). Chromosome-scale genome assembly of the mangrove climber species Dalbergia candenatensis. Scientific Data, 11, 1187. https://doi.org/10.1038/s41597-024-04032-2 [Google Scholar] [Crossref]

20. Song, Y., Zhang, Y., Xu, J., Li, W., & Li, M. (2019). Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Scientific Reports, 9, 20401. https://doi.org/10.1038/s41598-019-56727-x [Google Scholar] [Crossref]

21. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 [Google Scholar] [Crossref]

22. Thiel, T., Michalek, W., Varshney, R. K., & Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106(3), 411–422. https://doi.org/10.1007/s00122-002-1031-0 [Google Scholar] [Crossref]

23. Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., & Greiner, S. (2017). GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45(W1), W6–W11. https://doi.org/10.1093/nar/gkx391 [Google Scholar] [Crossref]

24. Wyman, S. K., Jansen, R. K., & Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17), 3252–3255. https://doi.org/10.1093/bioinformatics/bth352 [Google Scholar] [Crossref]

25. Yang, C., Chu, J., Warren, R. L., & Birol, I. (2021). Applications of chloroplast genomics in plant biology and biotechnology. Frontiers in Plant Science, 12, 760254. https://doi.org/10.3389/fpls.2021.760254 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles