Comparative Molecular Docking of Hyptis Verticillata Phytocompounds Against DNA Gyrase B and Multiple Bacterial Drug Targets

Authors

Eze, Kingsley Chijioke

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Dearsly, Emmanuel Markus

College of Natural and Applied Sciences, Salem University, Kogi State (Nigeria)

Oshatuyi Olukayode

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Ofutet, Emmanuel Oleba

Faculty of Medicine and Pharmaceutical Sciences, Kampala International University, Dar es salaam (Tanzania)

Imasa, Friday Okeje

Faculty of Basic Medical Sciences, University of Cross River State (Nigeria)

Akwagiobe, Emmanuel Ushigianle

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Ekwu Marvis Titi

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Agada Victoria Anyenu

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Umoh Ukeme Etop

Faculty of Basic Medical Sciences, University of Calabar (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.101100153

Subject Category: Health Science

Volume/Issue: 10/11 | Page No: 1648-1656

Publication Timeline

Submitted: 2025-12-02

Accepted: 2025-12-08

Published: 2025-12-27

Abstract

The rise of antimicrobial resistance (AMR) has become one of the most critical global health challenges, with multidrug-resistant bacteria severely reducing the efficacy of conventional antibiotics. According to the World Health Organization, resistant strains of Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli pose significant therapeutic challenges due to multiple resistance mechanisms, including efflux pump activation, enzymatic degradation, and mutation of drug targets (WHO, 2020). These limitations highlight the urgent need for alternative therapeutic strategies and novel bioactive scaffolds.

Keywords

Hyptis verticillata; molecular docking; follicle-stimulating hormone receptor

Downloads

References

1. Bahado-Singh, P. S., Wilson, M. V., & Delgoda, R. (2018). Inhibition of Cytochrome P450 Activities by Extracts of Hyptis verticillata Jacq.: Assessment for Potential Herb–Drug Interactions. Frontiers in Pharmacology, 9, 1–9. [Google Scholar] [Crossref]

2. Collin, F., Karkare, S., & Maxwell, A. (2011). Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Applied Microbiology and Biotechnology, 92(3), 479–497. [Google Scholar] [Crossref]

3. Collin, F., Karkare, S., & Maxwell, A. (2011). Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Applied Microbiology and Biotechnology, 92(3), 479–497. [Google Scholar] [Crossref]

4. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. [Google Scholar] [Crossref]

5. Delgado, G., Hernández, A., & Pereda-Miranda, R. (2005). Biological activity and chemical composition of the essential oil from Jamaican Hyptis verticillata Jacq. Journal of Essential Oil Research, 17(3), 265–268. [Google Scholar] [Crossref]

6. Gibbons, S. (2004). Anti-staphylococcal plant natural products. Natural Product Reports, 21(2), 263–277. [Google Scholar] [Crossref]

7. Hernández, A., Delgado, G., & Pereda-Miranda, R. (1995). Biological and pharmacological activities and further constituents of Hyptis verticillata. Planta Medica, 61(3), 270–273. [Google Scholar] [Crossref]

8. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., ... & Bolton, E. E. (2023). PubChem in 2023: New data content and improved web interfaces. Nucleic Acids Research, 51(D1), D1373–D1380. [Google Scholar] [Crossref]

9. Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. [Google Scholar] [Crossref]

10. Maxwell, A., & Lawson, D. M. (2003). The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Current Topics in Medicinal Chemistry, 3(3), 283–303. [Google Scholar] [Crossref]

11. Maxwell, A., & Lawson, D. M. (2003). The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Current Topics in Medicinal Chemistry, 3(3), 283–303. [Google Scholar] [Crossref]

12. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. [Google Scholar] [Crossref]

13. Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. [Google Scholar] [Crossref]

14. Saxena, V. K., & Khosa, R. L. (1979). Phytochemical studies on Hyptis verticillata. Journal of Research in Indian Medicine, 14, 67–70. [Google Scholar] [Crossref]

15. Singh, A., & Mishra, A. (2020). Molecular docking studies in drug discovery: A review. Journal of Pharmacognosy and Phytochemistry, 9(3), 1970–1978. [Google Scholar] [Crossref]

16. Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. [Google Scholar] [Crossref]

17. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. [Google Scholar] [Crossref]

18. Wong, K. K. Y., Loo, Y. M., & Downer, C. L. (1995). Composition of the essential oil from Jamaican Hyptis verticillata. Journal of Essential Oil Research, 7(6), 687–690. [Google Scholar] [Crossref]

19. World Health Organization. (2020). Global antimicrobial resistance and use surveillance system (GLASS) report. WHO Press. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles