Sensitivity and Threshold Analysis of the Basic Reproduction Number in a Lassa Fever Model
Authors
Mathematics/Statistics, Federal University Otuoke (Nigeria)
Mathematics/Statistics, Federal University Otuoke (Nigeria)
Article Information
DOI: 10.51584/IJRIAS.2025.10120090
Subject Category: Mathematics
Volume/Issue: 10/12 | Page No: 1070-1077
Publication Timeline
Submitted: 2025-11-27
Accepted: 2025-12-02
Published: 2026-01-19
Abstract
This paper presents a comprehensive sensitivity and threshold analysis of the basic reproduction number (R₀) for a deterministic model describing the transmission dynamics of Lassa fever between human and rodent populations. The next-generation matrix approach is employed to derive an explicit expression for R₀, which quantifies the average number of secondary infections generated by a single infectious individual in a fully susceptible population. Analytical differentiation of R₀ with respect to each model parameter yields normalized forward-sensitivity indices that measure the relative contribution of epidemiological and demographic parameters to disease transmission. The results indicate that transmission rates between humans and rodents (βHV and βVH) and population recruitment rates (ΛH and ΛV) exert the most positive influence on R₀, while the recovery rate (γH) and natural mortality of rodents (μV) produce the strongest negative effects. Threshold analysis further reveals that when R₀ < 1, the disease-free equilibrium is locally asymptotically stable, whereas for R₀ > 1, an endemic equilibrium emerges. These findings highlight that targeted interventions such as enhancing recovery through medical treatment and reducing human rodent contact are the most effective strategies for lowering R₀ below unity and achieving disease eradication.
Keywords
Lassa fever, Basic reproduction number, Sensitivity analysis
Downloads
References
1. Eli, I. C., & Abanum, G. C. (2022). Stabilizing the steady-state solution of Lassa fever: Problems and prospects. International Journal of Mathematical Research and Applications, 12(4), 45–60. [Google Scholar] [Crossref]
2. Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48. [Google Scholar] [Crossref]
3. Brauer, F., van den Driessche, P., & Wu, J. (2019). Mathematical Epidemiology (2nd ed.). Springer. https://doi.org/10.1007/978-3-030-04306-2 [Google Scholar] [Crossref]
4. Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70(5), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 [Google Scholar] [Crossref]
5. Diekmann, O., Heesterbeek, H., & Britton, T. (2013). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press. [Google Scholar] [Crossref]
6. Doohan, P. (2024). Modeling surface transmission in viral hemorrhagic fevers: Implications for indirect exposure routes. Infectious Disease Modelling, 9(1), 45–59.* [Google Scholar] [Crossref]
7. Funk, S., Salathé, M., & Jansen, V. A. A. (2010). Modelling the influence of human behaviour on the spread of infectious diseases: A review. Journal of the Royal Society Interface, 7(50), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 [Google Scholar] [Crossref]
8. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653. https://doi.org/10.1137/S0036144500371907 [Google Scholar] [Crossref]
9. Ibrahim, M. O., & Dénes, A. (2021). Mathematical modeling of the 2017–2020 Lassa fever epidemic in Nigeria. Mathematical Biosciences, 341, 108705. https://doi.org/10.1016/j.mbs.2021.108705 [Google Scholar] [Crossref]
10. Ibrahim, M. O., Musa, S., & Adeboye, O. A. (2021). Impact of awareness programs on Lassa fever transmission dynamics. Journal of Applied Mathematics, 2021, 1–15. https://doi.org/10.1155/2021/9943248 [Google Scholar] [Crossref]
11. Keeling, M. J., & Rohani, P. (2011). Modeling Infectious Diseases in Humans and Animals. Princeton University Press. [Google Scholar] [Crossref]
12. Madueme, T. C. (2024). Modeling vertical transmission and asymptomatic infection in Lassa fever dynamics. Infectious Disease Modelling, 9(2), 88–102.* [Google Scholar] [Crossref]
13. Mariën, J., et al. (2019). Lassa virus circulation in Mastomys natalensis populations in West Africa. PLoS Neglected Tropical Diseases, 13(11), e0007489. https://doi.org/10.1371/journal.pntd.0007489 [Google Scholar] [Crossref]
14. Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 [Google Scholar] [Crossref]
15. McCormick, J. B., King, I. J., Webb, P. A., Scribner, C. L., Craven, R. B., Johnson, K. M., Elliott, L. H., & Smith, E. S. (1987). A case–control study of the clinical response and survival of patients with Lassa fever. New England Journal of Medicine, 316(1), 20–26. https://doi.org/10.1056/NEJM198701013160104 [Google Scholar] [Crossref]
16. Ndenda, J. P., Njagarah, J. B., & Shaw, S. L. (2022). Modeling Lassa fever with asymptomatic and environmental transmission. Mathematical Biosciences, 345, 108782. https://doi.org/10.1016/j.mbs.2022.108782 [Google Scholar] [Crossref]
17. Ojo, M. M. (2021). Using data of a Lassa fever epidemic in Nigeria: A mathematical model. Mathematics, 9(5), 1181. https://doi.org/10.3390/math9051181 [Google Scholar] [Crossref]
18. Ojo, M. M., & Doungmo Goufo, E. F. (2022). Fractional dynamics of Lassa fever model with environmental transmission. Chaos, Solitons & Fractals, 156, 111806. https://doi.org/10.1016/j.chaos.2021.111806 [Google Scholar] [Crossref]
19. Olayemi, A., et al. (2016). New hosts of the Lassa virus. Scientific Reports, 6, 25280. https://doi.org/10.1038/srep25280 [Google Scholar] [Crossref]
20. Peter, O. J., et al. (2020). Modeling the transmission dynamics and control of Lassa fever. Mathematical Biosciences, 325, 108364. https://doi.org/10.1016/j.mbs.2020.108364 [Google Scholar] [Crossref]
21. Richmond, J. K., & Baglole, D. J. (2003). Lassa fever: Epidemiology, clinical features, and social consequences. BMJ, 327(7426), 1271–1275. https://doi.org/10.1136/bmj.327.7426.1271 [Google Scholar] [Crossref]
22. Shaffer, J. G., et al. (2014). Lassa fever in post-conflict Sierra Leone: Reemergence of disease and updates on the current outbreak. PLoS Neglected Tropical Diseases, 8(8), e2748. https://doi.org/10.1371/journal.pntd.0002748 [Google Scholar] [Crossref]
23. Taboe, H. B., Salako, K. V., Karamoko, Y., & Ngonghala, C. N. (2025). Modelling Lassa fever dynamics with optimal control strategies. BMC Infectious Diseases, 25(1), 54.* [Google Scholar] [Crossref]
24. World Health Organization. (2023). Lassa fever – Nigeria: Disease outbreak news. https://www.who.int/emergencies/disease-outbreak-news [Google Scholar] [Crossref]
25. Yusuff, A. (2022). Mathematical modeling of Lassa fever transmission with optimal control strategies. Results in Applied Mathematics, 15, 100287. https://doi.org/10.1016/j.rinam.2022.100287 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Interplay of Students’ Emotional Intelligence and Attitude toward Mathematics on Performance in Grade 10 Algebra
- Numerical Simulation of Fitzhugh-Nagumo Dynamics Using a Finite Difference-Based Method of Lines
- Fixed Point Theorem in Controlled Metric Spaces
- Usage of Moving Average to Heart Rate, Blood Pressure and Blood Sugar
- Exploring Algebraic Topology and Homotopy Theory: Methods, Empirical Data, and Numerical Examples